The increasing demand of plant oils for biodiesel production has highlighted the need for alternative strategies based either on non-food crops or agro-industrial wastes that do not compete with food and feed production. In this context, the combined use of wastewater and oleaginous microorganisms could be a valuable production option. Ricotta cheese whey (RCW), one of the major byproducts of the dairy industry, is produced in very high and steadily increasing amounts and, due to its high organic load, its disposal is cost-prohibitive. In the present study, in order to assess the adequacy of RCW as a growth medium for lipid production, 18 strains of oleaginous yeasts were investigated in shaken flask for their growth and lipid-producing capabilities on this substrate. Among them, Cryptococcus curvatus NRRL Y-1511 and Cryptococcus laurentii UCD 68-201 adequately grew therein producing substantial amounts of lipids (6.8 and 5.1 g L− 1, respectively). A high similarity between the percent fatty acid methyl esters (FAME) composition of lipids from the former and the latter strain was found with a predominance of oleic acid (52.8 vs. 48.7%) and of total saturated fatty acids (37.9 vs. 40.8%). The subsequent scale transfer of the C. laurentii UCD 68-201 lipid production process on RCW to a 3-L STR led to significantly improved biomass and total lipid productions (14.4 and 9.9 g L− 1, respectively) with the biodiesel yield amounting to 32.6%. Although the C. laurentii FAME profile was modified upon process transfer, it resembled that of the Jatropha oil, a well established feedstock for biodiesel production. In conclusion, C. laurentii UCD 68-201, for which there is very limited amount of available information, turned out to be a very promising candidate for biodiesel production and wide margins of process improvement might be envisaged.

A sustainable use of Ricotta Cheese Whey for microbial biodiesel production

Stazi S;
2017

Abstract

The increasing demand of plant oils for biodiesel production has highlighted the need for alternative strategies based either on non-food crops or agro-industrial wastes that do not compete with food and feed production. In this context, the combined use of wastewater and oleaginous microorganisms could be a valuable production option. Ricotta cheese whey (RCW), one of the major byproducts of the dairy industry, is produced in very high and steadily increasing amounts and, due to its high organic load, its disposal is cost-prohibitive. In the present study, in order to assess the adequacy of RCW as a growth medium for lipid production, 18 strains of oleaginous yeasts were investigated in shaken flask for their growth and lipid-producing capabilities on this substrate. Among them, Cryptococcus curvatus NRRL Y-1511 and Cryptococcus laurentii UCD 68-201 adequately grew therein producing substantial amounts of lipids (6.8 and 5.1 g L− 1, respectively). A high similarity between the percent fatty acid methyl esters (FAME) composition of lipids from the former and the latter strain was found with a predominance of oleic acid (52.8 vs. 48.7%) and of total saturated fatty acids (37.9 vs. 40.8%). The subsequent scale transfer of the C. laurentii UCD 68-201 lipid production process on RCW to a 3-L STR led to significantly improved biomass and total lipid productions (14.4 and 9.9 g L− 1, respectively) with the biodiesel yield amounting to 32.6%. Although the C. laurentii FAME profile was modified upon process transfer, it resembled that of the Jatropha oil, a well established feedstock for biodiesel production. In conclusion, C. laurentii UCD 68-201, for which there is very limited amount of available information, turned out to be a very promising candidate for biodiesel production and wide margins of process improvement might be envisaged.
2017
Eleonora, Carota; Silvia, Crognale; Alessandro, D'Annibale; Anna Maria, Gallo; Stazi, S; Maurizio, Petruccioli
File in questo prodotto:
File Dimensione Formato  
2017.ricotta.biodiesel.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 570.86 kB
Formato Adobe PDF
570.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Carota_Manuscript_R1.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 502.34 kB
Formato Adobe PDF
502.34 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2408258
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 52
social impact