To cope with the variable environment, animals are continuously required to learn novel behaviours or, in certain cases, to inhibit automatic and previously learned behaviours. Traditionally, inhibition has been regarded as cognitively demanding and studied mostly in primates, other mammals and birds, using laboratory tasks, such as the cylinder task. Recent studies have also revealed that fish show high levels of inhibition in the cylinder task. However, conclusions on such results are undermined by evidence that the cylinder task may be inappropriate to compare such phylogenetically distant species. Here, we studied whether a fish, the guppy, Poecilia reticulata, could learn to inhibit behaviour using a different paradigm, which exploited spontaneous foraging behaviour and overcame some drawbacks that characterised the cylinder task. We exposed guppies to live brine shrimp nauplii, Artemia salina, enclosed within a transparent tube. Initially, the guppies attempted to attack the prey but over time showed a rapid decrease of the attacks. Control tests seemed to exclude the possibility that this behavioural trend was due to response to novelty or habituation, and suggested that the guppies were learning to inhibit the foraging behaviour. Memory tests indicated that guppies retained the inhibition of foraging behaviour for at least 24 h. Our study seems to indicate that teleost fish display rapid and durable inhibition of spontaneous foraging behaviour; this may be related to previous evidence, from the cylinder task, supporting efficient behavioural inhibition in this taxon.
Guppies show rapid and lasting inhibition of foraging behaviour
Lucon-Xiccato T.
Primo
;Bertolucci C.Ultimo
2019
Abstract
To cope with the variable environment, animals are continuously required to learn novel behaviours or, in certain cases, to inhibit automatic and previously learned behaviours. Traditionally, inhibition has been regarded as cognitively demanding and studied mostly in primates, other mammals and birds, using laboratory tasks, such as the cylinder task. Recent studies have also revealed that fish show high levels of inhibition in the cylinder task. However, conclusions on such results are undermined by evidence that the cylinder task may be inappropriate to compare such phylogenetically distant species. Here, we studied whether a fish, the guppy, Poecilia reticulata, could learn to inhibit behaviour using a different paradigm, which exploited spontaneous foraging behaviour and overcame some drawbacks that characterised the cylinder task. We exposed guppies to live brine shrimp nauplii, Artemia salina, enclosed within a transparent tube. Initially, the guppies attempted to attack the prey but over time showed a rapid decrease of the attacks. Control tests seemed to exclude the possibility that this behavioural trend was due to response to novelty or habituation, and suggested that the guppies were learning to inhibit the foraging behaviour. Memory tests indicated that guppies retained the inhibition of foraging behaviour for at least 24 h. Our study seems to indicate that teleost fish display rapid and durable inhibition of spontaneous foraging behaviour; this may be related to previous evidence, from the cylinder task, supporting efficient behavioural inhibition in this taxon.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0376635718304935-main.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Postprint11392_2408239.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.