Herein, we investigate a lowly flammable electrolyte formed by dissolving sodium trifluoromethanesulfonate (NaCF3SO3) salt in triethylene glycol dimethyl ether (TREGDME) solvent as suitable medium for application in Na-ion and Na/S cells. The study, performed by using various electrochemical techniques, including impedance spectroscopy, voltammetry, and galvanostatic cycling, indicates for the solution high ionic conductivity and sodium transference number (t+), suitable stability window, very low electrode/electrolyte interphase resistance and sodium stripping/deposition overvoltage. Direct exposition to flame reveals the remarkable safety of the solution due to missing fire evolution under the adopted experimental setup. The solution is further investigated in sodium cells using various electrodes, i.e., mesocarbon microbeads (MCMBs), tin-carbon (Sn–C), and sulfur-multiwalled carbon nanotubes (S-MWCNTs). The results show suitable cycling performances, with stable reversible capacity ranging from 90 mAh g−1 for MCMB to 130 mAh g−1 for Sn–C, and to 250 mAh g−1 for S-MWCNTs, thus suggesting the electrolyte as promising candidate for application in sustainable sodium-ion and sodium-sulfur batteries.

Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries

Di Lecce D.
Primo
;
MINNETTI, LUCA
Secondo
;
Polidoro D.;Marangon V.
Penultimo
;
Hassoun J.
Ultimo
2019

Abstract

Herein, we investigate a lowly flammable electrolyte formed by dissolving sodium trifluoromethanesulfonate (NaCF3SO3) salt in triethylene glycol dimethyl ether (TREGDME) solvent as suitable medium for application in Na-ion and Na/S cells. The study, performed by using various electrochemical techniques, including impedance spectroscopy, voltammetry, and galvanostatic cycling, indicates for the solution high ionic conductivity and sodium transference number (t+), suitable stability window, very low electrode/electrolyte interphase resistance and sodium stripping/deposition overvoltage. Direct exposition to flame reveals the remarkable safety of the solution due to missing fire evolution under the adopted experimental setup. The solution is further investigated in sodium cells using various electrodes, i.e., mesocarbon microbeads (MCMBs), tin-carbon (Sn–C), and sulfur-multiwalled carbon nanotubes (S-MWCNTs). The results show suitable cycling performances, with stable reversible capacity ranging from 90 mAh g−1 for MCMB to 130 mAh g−1 for Sn–C, and to 250 mAh g−1 for S-MWCNTs, thus suggesting the electrolyte as promising candidate for application in sustainable sodium-ion and sodium-sulfur batteries.
2019
Di Lecce, D.; Minnetti, Luca; Polidoro, D.; Marangon, V.; Hassoun, J.
File in questo prodotto:
File Dimensione Formato  
DiLecce2019_Article_Triglyme-basedElectrolyteForSo.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Di Lecce_Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries_AAM.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2407716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact