The neuronal Ca2+-sensor guanylate cyclase-activating protein 3 (zGCAP3) is a major regulator of guanylate cyclase (GC) activity expressed in zebrafish cone cells. Here, the zGCAP3, or a monoclonal antibody directed against zGCAP3, was injected in the cone cytoplasm by employing the pressure-polished pipette technique. This technique allows to perform "real time" zGCAP3 (or of any other phototransduction protein) over-expression or knock-down, respectively, via the patch pipette. Photoresponses were not affected by purified zGCAP3, indicating that GC was already saturated with endogenous zGCAP3. The cytosolic injection of anti-zGCAP3 produced the slowing down kinetics of the flash response recovery, as theoretically expected by a minimal phototransduction model considering the antibody acting exclusively on the maximal GC activation by low Ca2+. However, the antibody produced a progressive current decay toward the zero level, as if the antibody affected also the basal GC activity in the dark.

Incorporating phototransduction proteins in zebrafish green cone with pressure-polished patch pipettes

Aquila, Marco
Primo
Membro del Collaboration Group
;
KOCH, Karl Wilhelm
Penultimo
Membro del Collaboration Group
;
Rispoli, Giorgio
Ultimo
Membro del Collaboration Group
2019

Abstract

The neuronal Ca2+-sensor guanylate cyclase-activating protein 3 (zGCAP3) is a major regulator of guanylate cyclase (GC) activity expressed in zebrafish cone cells. Here, the zGCAP3, or a monoclonal antibody directed against zGCAP3, was injected in the cone cytoplasm by employing the pressure-polished pipette technique. This technique allows to perform "real time" zGCAP3 (or of any other phototransduction protein) over-expression or knock-down, respectively, via the patch pipette. Photoresponses were not affected by purified zGCAP3, indicating that GC was already saturated with endogenous zGCAP3. The cytosolic injection of anti-zGCAP3 produced the slowing down kinetics of the flash response recovery, as theoretically expected by a minimal phototransduction model considering the antibody acting exclusively on the maximal GC activation by low Ca2+. However, the antibody produced a progressive current decay toward the zero level, as if the antibody affected also the basal GC activity in the dark.
2019
Aquila, Marco; Dell'Orco, Daniele; Fries, Ramona; Koch, Karl Wilhelm; Rispoli, Giorgio
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0301462219302790-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2406626
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact