Coastal lagoons display a wide range of physico-chemical conditions that shape benthic macrofauna communities. In turn, benthic macrofauna affects a wide array of biogeochemical processes as a consequence of feeding, bioirrigation, ventilation, and excretion activities. In this work, we have measured benthic respiration and solute fluxes in intact sediment cores with natural macrofauna communities collected from four distinct areas within the Sacca di Goro Lagoon (NE Adriatic Sea). The macrofauna community was characterized at the end of the incubations. Redundancy analysis (RDA) was used to quantify and test the interactions between the dominant macrofauna species and solute fluxes. Moreover, the relevance of macrofauna as driver of benthic nitrogen (N) redundancy analysis revealed that up to 66% of the benthic fluxes and metabolism variance was explained by macrofauna microbial-mediated N processes. Nitrification was stimulated by the presence of shallow (corophiids) in combination with deep burrowers (spionids, oligochaetes) or ammonium-excreting clams. Deep burrowers and clams increase ammonium availability in burrows actively ventilated by corophiids, which creates optimal conditions to nitrifiers. However, the stimulatory effect of burrowing macrofauna on nitrification does not necessarily result in higher denitrification as processes are spatially separated.

Coastal lagoons display a wide range of physico-chemical conditions that shape benthic macrofauna communities. In turn, benthic macrofauna affects a wide array of biogeochemical processes as a consequence of feeding, bioirrigation, ventilation, and excretion activities. In this work, we have measured benthic respiration and solute fluxes in intact sediment cores with natural macrofauna communities collected from four distinct areas within the Sacca di Goro Lagoon (NE Adriatic Sea). The macrofauna community was characterized at the end of the incubations. Redundancy analysis (RDA) was used to quantify and test the interactions between the dominant macrofauna species and solute fluxes. Moreover, the relevance of macrofauna as driver of benthic nitrogen (N) redundancy analysis revealed that up to 66% of the benthic fluxes and metabolism variance was explained by macrofauna microbial-mediated N processes. Nitrification was stimulated by the presence of shallow (corophiids) in combination with deep burrowers (spionids, oligochaetes) or ammonium-excreting clams. Deep burrowers and clams increase ammonium availability in burrows actively ventilated by corophiids, which creates optimal conditions to nitrifiers. However, the stimulatory effect of burrowing macrofauna on nitrification does not necessarily result in higher denitrification as processes are spatially separated.

Estuarine macrofauna affects benthic biogeochemistry in a hypertrophic lagoon

Zilius M.;Castaldelli G.;
2019

Abstract

Coastal lagoons display a wide range of physico-chemical conditions that shape benthic macrofauna communities. In turn, benthic macrofauna affects a wide array of biogeochemical processes as a consequence of feeding, bioirrigation, ventilation, and excretion activities. In this work, we have measured benthic respiration and solute fluxes in intact sediment cores with natural macrofauna communities collected from four distinct areas within the Sacca di Goro Lagoon (NE Adriatic Sea). The macrofauna community was characterized at the end of the incubations. Redundancy analysis (RDA) was used to quantify and test the interactions between the dominant macrofauna species and solute fluxes. Moreover, the relevance of macrofauna as driver of benthic nitrogen (N) redundancy analysis revealed that up to 66% of the benthic fluxes and metabolism variance was explained by macrofauna microbial-mediated N processes. Nitrification was stimulated by the presence of shallow (corophiids) in combination with deep burrowers (spionids, oligochaetes) or ammonium-excreting clams. Deep burrowers and clams increase ammonium availability in burrows actively ventilated by corophiids, which creates optimal conditions to nitrifiers. However, the stimulatory effect of burrowing macrofauna on nitrification does not necessarily result in higher denitrification as processes are spatially separated.
2019
Politi, T.; Zilius, M.; Castaldelli, G.; Bartoli, M.; Daunys, D.
File in questo prodotto:
File Dimensione Formato  
water-11-01186.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2406132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact