The need of a fs-scale pulsed, high repetition rate, X-ray source for time-resolved fine analysis of matter (spectroscopy and photon scattering) in the linear response regime is addressed by the conceptual design of a facility called MariX (Multi-disciplinary Advanced Research Infrastructure for the generation and application of X-rays) outperforming current X-ray sources for the declared scope. MariX is based on the original design of a two-pass two-way superconducting linear electron accelerator, equipped with an arc compressor, to be operated in CW mode (1 MHz). MariX provides FEL emission in the range 0.2–8 keV with 10 8 photons per pulse ideally suited for photoelectric effect and inelastic X-ray scattering experiments. The accelerator complex includes an early stage that supports an advanced inverse Compton source of very high-flux hard X-rays of energies up to 180 keV that is well adapted for large area radiological imaging, realizing a broad science programme and serving a multidisciplinary user community, covering fundamental science of matter and application to life sciences, including health at preclinical and clinical level.
MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering
Cardarelli P.;Gambaccini M.;Paterno G.;Taibi A.;
2019
Abstract
The need of a fs-scale pulsed, high repetition rate, X-ray source for time-resolved fine analysis of matter (spectroscopy and photon scattering) in the linear response regime is addressed by the conceptual design of a facility called MariX (Multi-disciplinary Advanced Research Infrastructure for the generation and application of X-rays) outperforming current X-ray sources for the declared scope. MariX is based on the original design of a two-pass two-way superconducting linear electron accelerator, equipped with an arc compressor, to be operated in CW mode (1 MHz). MariX provides FEL emission in the range 0.2–8 keV with 10 8 photons per pulse ideally suited for photoelectric effect and inelastic X-ray scattering experiments. The accelerator complex includes an early stage that supports an advanced inverse Compton source of very high-flux hard X-rays of energies up to 180 keV that is well adapted for large area radiological imaging, realizing a broad science programme and serving a multidisciplinary user community, covering fundamental science of matter and application to life sciences, including health at preclinical and clinical level.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0168900219304395-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ViewPageProof_NIMA_62041.pdf
Open Access dal 04/04/2021
Descrizione: Post print
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.