We use techniques from time-frequency analysis to show that the space $mathcal S_omega$ of rapidly decreasing $omega$-ultradifferentiable functions is nuclear for every weight function $omega(t)=o(t)$ as t tends to infinity. Moreover, we prove that, for a sequence $(M_p)_p$ satisfying the classical condition (M1) of Komatsu, the space of Beurling type $mathcal S_{(M_p)}$ when defined with $L^2$-norms is nuclear exactly when condition (M2)' of Komatsu holds.
Nuclearity of rapidly decreasing ultradifferentiable functions and time-frequency analysis
Chiara BoitiPrimo
;
2021
Abstract
We use techniques from time-frequency analysis to show that the space $mathcal S_omega$ of rapidly decreasing $omega$-ultradifferentiable functions is nuclear for every weight function $omega(t)=o(t)$ as t tends to infinity. Moreover, we prove that, for a sequence $(M_p)_p$ satisfying the classical condition (M1) of Komatsu, the space of Beurling type $mathcal S_{(M_p)}$ when defined with $L^2$-norms is nuclear exactly when condition (M2)' of Komatsu holds.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BJOS-NuclearGabor.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1906.05171.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
272.29 kB
Formato
Adobe PDF
|
272.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.