In this study, a laboratory experiment–based testing program was conducted on a large-scale high-strength Prestressed Concrete I (PCI) beam with a parabolic unbonded tendon, capable of simulating a typical prestressed bridge member. Specifically, the simply supported PCI beam was subjected to free transverse vibrations with different prestress forces to demonstrate that its fundamental frequency was unaffected by such force. A reference model, describing the behavior of the PCI beam as a combination of two substructures interconnected, i.e., a compressed concrete Euler–Bernoulli beam and a tensioned parabolic cable, predicts no change in fundamental frequency with increasing prestress force when variation of the concrete's initial elastic modulus over time is taken into account. The large-scale experimental results confirmed that fundamental frequency is not an appropriate parameter for prestress loss prediction in concrete bridge beams with parabolic unbonded tendons. Accordingly, subsequent studies will be conducted for improving a static nondestructive testing method for such detection in concrete bridges.

Experimental study on the fundamental frequency of prestressed concrete bridge beams with parabolic unbonded tendons

Bonopera M.
Primo
;
Tullini N.
Ultimo
2019

Abstract

In this study, a laboratory experiment–based testing program was conducted on a large-scale high-strength Prestressed Concrete I (PCI) beam with a parabolic unbonded tendon, capable of simulating a typical prestressed bridge member. Specifically, the simply supported PCI beam was subjected to free transverse vibrations with different prestress forces to demonstrate that its fundamental frequency was unaffected by such force. A reference model, describing the behavior of the PCI beam as a combination of two substructures interconnected, i.e., a compressed concrete Euler–Bernoulli beam and a tensioned parabolic cable, predicts no change in fundamental frequency with increasing prestress force when variation of the concrete's initial elastic modulus over time is taken into account. The large-scale experimental results confirmed that fundamental frequency is not an appropriate parameter for prestress loss prediction in concrete bridge beams with parabolic unbonded tendons. Accordingly, subsequent studies will be conducted for improving a static nondestructive testing method for such detection in concrete bridges.
2019
Bonopera, M.; Chang, K. C.; Chen, C. C.; Sung, Y. C.; Tullini, N.
File in questo prodotto:
File Dimensione Formato  
Experimental study on the fundamental frequency of prestressed concrete bridge beams with parabolic unbonded tendons.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.03 MB
Formato Adobe PDF
3.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392_2405060_POST_Bonopera_et_al_JSV_2019.pdf

Open Access dal 14/05/2021

Descrizione: Post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2405060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact