The spatial/temporal proximity of Mt. Etna to the Hyblean Plateau and the Aeolian slab makes the discussion on the nature of its mantle source/s extremely controversial. In this study, a detailed geochemical overview of the entire Mt. Etna evolutionary sequence and a comparison with the magmatism of the Hyblean Plateau was proposed to: (i) simulate the composition of Mt. Etna tholeiitic to alkaline primitive magmas in equilibrium with a fertile mantle source; (ii) model the nature, composition and evolution of the mantle source from the tholeiitic stage (600 ka) to present magmatism. According to our simulations, two amphibole + phlogopite-bearing spinel lherzolite sources are able to explain the wide range of Etnean primary magmas. The enrichment in LILE, 87Sr/86Sr, Rb and H2O of the magmas emitted after 1971 (but also discontinuously generated in both historic and prehistoric times) are caused by different melting proportions of amphibole and phlogopite in a modally and compositionally homogeneous mantle domain, with melting degrees analogous to those required to produce magmas erupted prior to 1971. The behaviour of the hydrous phases during melting could be ascribed to a variable H2O/CO2 activity in the mantle source, in turn related to the heat/fluxes supply from the asthenospheric upwelling beneath Mt. Etna. All these considerations, strengthened by numerical models, are then merged to review the complex Pliocene/Lower Pleistocene to present day’s geodynamic evolution of eastern Sicily.

The evolution of the mantle source beneath Mt. Etna (Sicily, Italy): from the 600 ka tholeiites to the recent trachybasaltic magmas

Casetta, Federico
Primo
;
Giacomoni, Pier Paolo
Secondo
;
Bonadiman, Costanza
Penultimo
;
Coltorti, Massimo
Ultimo
2020

Abstract

The spatial/temporal proximity of Mt. Etna to the Hyblean Plateau and the Aeolian slab makes the discussion on the nature of its mantle source/s extremely controversial. In this study, a detailed geochemical overview of the entire Mt. Etna evolutionary sequence and a comparison with the magmatism of the Hyblean Plateau was proposed to: (i) simulate the composition of Mt. Etna tholeiitic to alkaline primitive magmas in equilibrium with a fertile mantle source; (ii) model the nature, composition and evolution of the mantle source from the tholeiitic stage (600 ka) to present magmatism. According to our simulations, two amphibole + phlogopite-bearing spinel lherzolite sources are able to explain the wide range of Etnean primary magmas. The enrichment in LILE, 87Sr/86Sr, Rb and H2O of the magmas emitted after 1971 (but also discontinuously generated in both historic and prehistoric times) are caused by different melting proportions of amphibole and phlogopite in a modally and compositionally homogeneous mantle domain, with melting degrees analogous to those required to produce magmas erupted prior to 1971. The behaviour of the hydrous phases during melting could be ascribed to a variable H2O/CO2 activity in the mantle source, in turn related to the heat/fluxes supply from the asthenospheric upwelling beneath Mt. Etna. All these considerations, strengthened by numerical models, are then merged to review the complex Pliocene/Lower Pleistocene to present day’s geodynamic evolution of eastern Sicily.
2020
Casetta, Federico; Giacomoni, Pier Paolo; Ferlito, Carmelo; Bonadiman, Costanza; Coltorti, Massimo
File in questo prodotto:
File Dimensione Formato  
casetta2019.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.45 MB
Formato Adobe PDF
3.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2404416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact