We analyze a phase-field approximation of a sharp-interface model for two-phase materials proposed by Šilhavý (in: Hackl (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials, pp 233–244, Springer, Dordrecht, 2010; J Elast 105:271–303, 2011). The distinguishing trait of the model resides in the fact that the interfacial term is Eulerian in nature, for it is defined on the deformed configuration. We discuss a functional frame allowing for the existence of phase-field minimizers and Γ -convergence to the sharp-interface limit. As a by-product, we provide additional detail on the admissible sharp-interface configurations with respect to the analysis in Šilhavý (2010, 2011).

A Phase-Field Approach to Eulerian Interfacial Energies

D. Grandi
Primo
;
E. Mainini;
2019

Abstract

We analyze a phase-field approximation of a sharp-interface model for two-phase materials proposed by Šilhavý (in: Hackl (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials, pp 233–244, Springer, Dordrecht, 2010; J Elast 105:271–303, 2011). The distinguishing trait of the model resides in the fact that the interfacial term is Eulerian in nature, for it is defined on the deformed configuration. We discuss a functional frame allowing for the existence of phase-field minimizers and Γ -convergence to the sharp-interface limit. As a by-product, we provide additional detail on the admissible sharp-interface configurations with respect to the analysis in Šilhavý (2010, 2011).
2019
Grandi, D.; Mainini, E.; Kružík, M.; Stefanelli, U.
File in questo prodotto:
File Dimensione Formato  
GKMS_190321_revision.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 384.99 kB
Formato Adobe PDF
384.99 kB Adobe PDF Visualizza/Apri
Grandi2019_Article_APhase-FieldApproachToEulerian.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 398.7 kB
Formato Adobe PDF
398.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact