We analyze a phase-field approximation of a sharp-interface model for two-phase materials proposed by Šilhavý (in: Hackl (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials, pp 233–244, Springer, Dordrecht, 2010; J Elast 105:271–303, 2011). The distinguishing trait of the model resides in the fact that the interfacial term is Eulerian in nature, for it is defined on the deformed configuration. We discuss a functional frame allowing for the existence of phase-field minimizers and Γ -convergence to the sharp-interface limit. As a by-product, we provide additional detail on the admissible sharp-interface configurations with respect to the analysis in Šilhavý (2010, 2011).
A Phase-Field Approach to Eulerian Interfacial Energies
D. GrandiPrimo
;E. Mainini;
2019
Abstract
We analyze a phase-field approximation of a sharp-interface model for two-phase materials proposed by Šilhavý (in: Hackl (ed) IUTAM symposium on variational concepts with applications to the mechanics of materials, pp 233–244, Springer, Dordrecht, 2010; J Elast 105:271–303, 2011). The distinguishing trait of the model resides in the fact that the interfacial term is Eulerian in nature, for it is defined on the deformed configuration. We discuss a functional frame allowing for the existence of phase-field minimizers and Γ -convergence to the sharp-interface limit. As a by-product, we provide additional detail on the admissible sharp-interface configurations with respect to the analysis in Šilhavý (2010, 2011).File | Dimensione | Formato | |
---|---|---|---|
GKMS_190321_revision.pdf
accesso aperto
Descrizione: Post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
384.99 kB
Formato
Adobe PDF
|
384.99 kB | Adobe PDF | Visualizza/Apri |
Grandi2019_Article_APhase-FieldApproachToEulerian.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
398.7 kB
Formato
Adobe PDF
|
398.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.