The application of Peptide Nucleic Acids (PNAs), mimics of DNA lacking the sugar-phosphate backbone, for antisense/anti-gene therapy and gene editing is limited by their low uptake by cells. Currently, no simple and efficient delivery systems and methods are available to solve this open issue. One of the most promising approach is the modification of the PNA structure through the covalent linkage of poliarginine tails, but this means that every PNA intended to be internalized must be modified. Herein we report the results relative to the delivery ability of a macrocyclic multivalent tetraargininocalix[4]arene (1) used as non-covalent vector for anti-miR-221-3p PNAs. High delivery efficiency, low cytotoxicity, maintenance of the PNA biological activity and ease preparation of the transfection formulation, simply attained by mixing PNA and calixarene, candidate this vector as universal delivery system for this class of nucleic acid analogues.

Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene

Gasparello, Jessica
Primo
;
Gambari, Roberto;Finotti, Alessia
Penultimo
;
2019

Abstract

The application of Peptide Nucleic Acids (PNAs), mimics of DNA lacking the sugar-phosphate backbone, for antisense/anti-gene therapy and gene editing is limited by their low uptake by cells. Currently, no simple and efficient delivery systems and methods are available to solve this open issue. One of the most promising approach is the modification of the PNA structure through the covalent linkage of poliarginine tails, but this means that every PNA intended to be internalized must be modified. Herein we report the results relative to the delivery ability of a macrocyclic multivalent tetraargininocalix[4]arene (1) used as non-covalent vector for anti-miR-221-3p PNAs. High delivery efficiency, low cytotoxicity, maintenance of the PNA biological activity and ease preparation of the transfection formulation, simply attained by mixing PNA and calixarene, candidate this vector as universal delivery system for this class of nucleic acid analogues.
2019
Gasparello, Jessica; Manicardi, Alex; Casnati, Alessandro; Corradini, Roberto; Gambari, Roberto; Finotti, Alessia; Sansone, Francesco
File in questo prodotto:
File Dimensione Formato  
Efficient cell penetration and delivery of peptide nucleic acids by an arginocalix(4)arene.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 3.07 MB
Formato Adobe PDF
3.07 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403618
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 45
social impact