We study random-field solutions of a class of stochastic partial differential equations, involving operators with polynomially bounded coefficients. We consider linear equations under suitable hyperbolicity hypotheses, and we provide conditions on the initial data and on the stochastic term, namely, on the associated spectral measure, so that these kind of solutions exist in suitably chosen functional classes. We also give a regularity result for the expected value of the solution.
Random-field Solutions of Weakly Hyperbolic Stochastic Partial Differential Equations with Polynomially Bounded Coefficients
alessia Ascanelli
Primo
;
2020
Abstract
We study random-field solutions of a class of stochastic partial differential equations, involving operators with polynomially bounded coefficients. We consider linear equations under suitable hyperbolicity hypotheses, and we provide conditions on the initial data and on the stochastic term, namely, on the associated spectral measure, so that these kind of solutions exist in suitably chosen functional classes. We also give a regularity result for the expected value of the solution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
lineare definitivo 10.1007_s11868-019-00290-6.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
635.71 kB
Formato
Adobe PDF
|
635.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ACS20.pdf
accesso aperto
Descrizione: Post-print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
805.06 kB
Formato
Adobe PDF
|
805.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.