This thesis describes the research I conducted during a three-year doctoral program (2013-2015) in Engineering Science, in the branch study of Civil and Environmental Engineering. During this period, I focused on the development of a systematic modeling approach for calibrating and validating the agro-hydrological SWAT model for realistically simulating all critical hydrological and water quantity processes in large River Basins in Europe (i.e. surface runoff, lateral flow, baseflow, erosion and sedimentation, plant growth, nutrients cycle/fate/transport, denitrification and karst phenomena). This research stems from the need to provide robust and suitable model assessment for making sound management, policy and regulatory decisions. Several innovations were introduced in the modeling approach aimed both to improve model structure and calibration procedure. First of all, modifications of SWAT model were applied to produce new useful outputs for calibration and interpretation of specific processes. New algorithms for the calculation of hillslope length parameter and LS factor were also proposed and tested, as well as a new MUSLE equation. Furthermore, karst processes were represented using the KSWAT model, a combination of SWAT with a karst-flow model. Concerning the calibration/validation, a process-based approach was developed involving both hard (i.e. long time series in multiple gauging stations) and soft data (i.e. literature information of a specific process within a water, sediment, or nutrient balance that may not be directly measured within the study area, e.g. average annual estimate of denitrification) for a threefold objective: to match well the observations, to understand the processes within a basin and to provide accurate cost-benefit scenarios analysis for achieving the goals of the main European Directives. The proposed systematic modeling approach consists on different aspects: the definition of a process-based calibration and validation (C/V) strategy for quantity (streamflow and its components) and quality aspects (sediment and nutrients); detailed study for representing hydrological processes at different climate regimes and in karst dominant morphologies; validation of water balance components using a Budyko framework approach; the inter-model-comparison of outputs 2 (Benchmarking approach); the definition of a suitable model setup based on a sensitivity analysis of derived topographic attributes from different Digital Elevation Model (DEM) pixel size; the definition of cost-effective measures for the Best Management Practices (BMPs) implementation. Five SWAT model case studies were used to illustrate these topics covering approximately 55% of Europe Union. The Iberian (556,000 km2) and the Scandinavia (1,000,000 km2) Peninsulas were selected to test the C/V strategy in different climate regimes, while the Danube River Basin (800,000 km2), as well as the Upper Danube (132,000 km2), were considered as strategic largesocioeconomic-heterogeneous areas for investigating the main key topics of the procedure through water quantity and quality assessment. The Crete Island (8,400 km2) was instead selected as representative for karst phenomena assessment, as it is covered more than 40% by karst features. The analysis of these SWAT model applications has shown that the processbased C/V strategy is able to obtain good performance statistics and to gain good knowledge of each hydrological process through the analysis of temporal and spatial variations of calibrated streamflow in different large regions, characterized by heterogeneous spatial topography, land uses, soils and different climate regimes. Furthermore, the analysis of the main components of the water balance (evapotranspiration and baseflow) via Budyko framework highlighted the difficulties of SWAT model to predict correctly the baseflow in regulated mountainous basins and the dependence of the procedure on the number and spatial distribution of gauging stations and on anthropogenic water storage impact, as well as the water diversions. It was also observed that the predicted streamflow at large-scale is not affected by DEM pixel size (both with 25 m and 100 m DEM pixel size) and SWAT topographic attributes (e.g. slope and hillslope length). Conversely, the streamflow components resulted markedly affected by the change of the hillslope length parameter calculation based on DEM pixel size, highlighting the need to improve the current SWAT algorithm for a better representation of the streamflow components, as well as sediment yields via Modified Universal Soil Loss Equation (MUSLE). This equation was modified to reduce the sensitivity of sediment yields to the Hydrologic Response Units (HRUs) and slope-length factor (LS) obtaining robust simulation of sediment concentrations, yields and suitable budgets in large River Basins. Furthermore, it was demonstrated that SWAT is 3 able to reproduce the karst processes when opportunely adapted to reproduce the karst features and their intrinsic characteristics (such as fast infiltration in deep groundwater, movement of water in the karst conduits across subbasins not hydrologically connected, and the return of water as springs discharges in the rivers), thus increasing the reliability of water balance prediction in numerous river basins in Europe affected by karst water resources. As regards the water quality (sediment and nutrients), it was observed that only few watershed parameters were sensitive to calibration, increasing the difficult to represent the spatial variation of some processes in large-areas, such as the denitrification and sediment transport in the river. However, the monthly seasonal variation of total nitrogen and phosphorous concentrations were well reproduced at multi-gauging stations, given a substantial control of pollution as directly request by the European Directives (i.e. Drinking Water Directive, 98/83/EC). Furthermore, the inter-model comparisons of nutrient loads confirmed the ability of SWAT model to predict comparable nutrient loads in large–river basins, albeit the need to collect more environmental data emerged. Finally, the proposed multi-objective optimization tool for BMPs implementation in SWAT was recognized as a very useful tool in identifying efficient scenarios, related to reduction of mineral fertilization and Waste Water Treatment Plants (WWTPs) upgrading, providing significantly nutrients concentration reduction with the best cost–effectiveness. These findings can be also summarised as several useful recommendations for SWAT modellers. In conclusion, the proposed systematic approach for C/V procedure with SWAT has shown to be pedagogic and a powerful tool both for scientists, policy makers and also stakeholders, and could be extended to other hydrological and water quality models with similar structure as SWAT.
Questa tesi descrive l’attività di ricerca svolta durante i tre anni di dottorato (2013-2015) in Scienze dell’ Ingegneria, nel ramo di studio di Ingegneria Civile e Ambientale. Il lavoro di ricerca si è focalizzato sullo sviluppo di un approccio modellistico sistematico per calibrare e validare (C/V; Calibrazione/Validazione) il modello agro-idrologico SWAT per simulare realisticamente tutti i processi di quantità e qualità delle acque in grandi bacini idrografici in Europa (ovvero deflusso superficiale, flusso laterale, baseflow, erosione e sedimentazione, la crescita delle piante, ciclo dei nutrienti/destino/trasporto, denitrificazione e fenomeni carsici). Questa ricerca nasce dalla necessità di fornire robuste valutazioni ai fini di una corretta gestione e per il supporto alle decisioni politiche e normative. Molte innovazioni sono state introdotte nell’approccio modellistico sia per migliorare la struttura che la procedura di calibrazione. Prima di tutto, sono state fatte modifiche al modello SWAT per produrre nuovi e utili outputs per la calibrazione ed interpretazione di specifici processi. Nuovi algoritmi per il calcolo del parametro lunghezza di versante e del fattore LS sono stati testati e validati, cosi come modifiche alla equazione MUSLE. Inoltre, i processi carsici sono stati rappresentati usando il modello KSWAT (qui sviluppato), una combinazione del modello SWAT con un modello di flusso carsico. Per quanto riguarda la calibrazione/validazione, un approccio basato sui processi è stato sviluppato utilizzando sia “hard data” (lunghe serie temporali di dati in molteplici punti di monitoraggio) che “soft data” (informazioni da letteratura di uno specifico processo all’interno del bilancio idrologico, dei sedimenti o dei nutrienti che possono non essere direttamente misurate nell’area di studio, per esempio stima della media annuale di denitrificazione) per un triplice obiettivo: simulare bene le osservazioni, capire i processi all’interno di un bacino e fornire accurate analisi di scenario di costi-benefici per raggiungere gli obiettivi delle principali Direttive Europee. L’approccio modellistico sistematico qui proposto coinvolge diversi aspetti: una strategia di calibrazione e validazione che considera i processi sia relativi alla quantità (portata e sue componenti) che alla qualità (sedimenti e nutrienti); studio di dettaglio per rappresentare i processi idrologici in differenti zone climatiche, cosi come in aree con morfologie carsiche dominanti; validazione delle componenti del bilancio idrologico usando l’approccio di Budyko; la definizione di un setup di modello basato su un'analisi di sensibilità degli attributi topografici derivati da Modelli Digitali del Terreno (DEMs) con diverse risoluzioni; una inter-comparazione dei risultati di diversi modelli (approccio di 2 benchmarking) e la definizione di misure economicamente efficaci per le implementazioni delle migliori pratiche di gestione. Cinque casi studio, e dunque 5 modelli SWAT, che ricoprono circa il 55% d’Europa, sono stati realizzati per spiegare questi argomenti. La Penisola Iberica (556,000 km2) e la Scandinavia (1,000,000 km2) sono state scelte per testare la metodologia di C/V in differenti aree climatiche, mentre il Bacino del Danubio (800,000 km2), cosi come l’Upper Danubio (132,000 km2), sono stati considerati come strategiche, estese-socioeconomiche and eterogenee aree per studiare i principali temi della procedura attraverso la valutazione idrologica e qualitativa. L’isola di Creta invece è stata selezionata per rappresentare fenomeni carsici dal momento che ne è ricoperta piu’del 40%. L’analisi di queste applicazioni modellistiche con SWAT ha mostrato che la metodologica di C/V permette di ottenere buone performance statistiche e buone conoscenze di ogni processo idrologico attraverso l’analisi delle variazioni temporali e spaziali della portata calibrata in regioni diverse ed estese, caratterizzate da eterogenee caratteristiche quali topografia, uso del suolo, tipi di suoli e diversi regimi climatici. Inoltre, l’analisi delle principali componenti del bilancio idrologico (evapotraspirazione e deflusso di base) utilizzando l’approccio Budyko ha messo in evidenza le difficoltà del modello SWAT di predire correttamente il deflusso di base in bacini montuosi regolati, sottolineando la dipendenza della procedura di calibrazione dal numero e dalla distribuzione spaziale delle stazioni di monitoraggio e dall’impatto antropogenico di stoccaggio dell’acqua e diversioni. Si è osservato inoltre che la portata a grande scala non è influenzata né dalla risoluzione del DEM (sia di 25 m e di 100 m) né dagli attributi topografici derivati (per esempio pendenza e lunghezza di versante). Al contrario, le componenti della portata (superficiale, subsuperficiale e sotterranea) sono influenzate dal calcolato del parametro lunghezza di versante basato sul DEM, sottolineando la necessità di migliorare l’attuale algoritmo di SWAT per una migliore rappresentazione delle componenti della portata, cosi come i sedimenti tramite l’equazione “Modified Universal Soil Loss Equation (MUSLE)”. Questa equazione è stata modificata per ridurre la sensibilità dei sedimenti dalle dimensioni della Unità di Risposta Idrologica (HRU) e dal fattore pendenza –lunghezza (LS) ottenerlo robuste simulazioni di concentrazioni e carichi di sedimenti, come anche robusti bilanci in grandi bacini fluviali. E’stato inoltre dimostrato che se opportunamente adattato SWAT è in grado di simulare i processi carsici e le sue intrinseche caratteristiche (per esempio la veloce di infiltrazione nell’acquifero profondo, il movimento dell’acqua nei condotti carsici attraverso sottobacini non ideologicamente connessi in superfici, e il ritorno di flusso nei canali tramite sorgenti 3 carsiche, incrementando così la robustezza del bilancio idrologico in numerosi bacini fluviali in Europa influenzati dalle risorse di acqua carsiche. Per quanto riguarda la qualità delle acque (sedimenti e nutrienti), è stato dimostrato che solo pochi parametri erano sensibili alla calibrazione, aumentando così la difficoltà di rappresentare la variazione spaziale di alcuni processi a grande scala, come la denitrificazione e il trasporto di sedimenti nei fiumi. Comunque, la variazione mensile dell’azoto e fosforo totale sono stati ben simulati in molteplici stazioni di monitoraggio dando un controllo sostanziale dell’inquinamento come direttamente richiesto dalle Direttive Europee (come per esempio la Direttiva Acque Potabili, 98/83/EC). L’inter-comparazione dei carichi dei nutrienti tra diversi modelli ha inoltre confermato l’abilità di SWAT di simulare comparabili carichi di nutrienti in grandi bacini fluviali, sebbene si è evidenziata la necessità di incrementare le osservazioni. Infine, lo strumento di ottimizzazione multi-obiettivo per la gestione delle migliori pratiche di gestione (BMPs) è stato riconosciuto come un valido strumento per identificare efficienti scenari, per esempio correlati alla riduzione di fertilizzanti minerali e al miglioramento di efficienza di depurazione dei depuratori (WWTPs), fornendo una significativa riduzione delle concentrazioni con il miglior costo-beneficio. Questi risultati possono essere viste anche come utili raccomandazioni per i utenti/modellisti che usano SWAT. In conclusione, l’approccio sistematico proposto per la calibrazione/validazione del modello SWAT ha mostrato di essere pedagogico e un potente strumento per scienziati, per politici e anche stakeholders, e può essere esteso ad altri modelli quali-quantitativi che hanno una struttura simile a quella di SWAT.
A systematic approach for calibrating and validating the agro-hydrological SWAT model for policy support and decision making in large European River Basins
MALAGO', Anna
2016
Abstract
This thesis describes the research I conducted during a three-year doctoral program (2013-2015) in Engineering Science, in the branch study of Civil and Environmental Engineering. During this period, I focused on the development of a systematic modeling approach for calibrating and validating the agro-hydrological SWAT model for realistically simulating all critical hydrological and water quantity processes in large River Basins in Europe (i.e. surface runoff, lateral flow, baseflow, erosion and sedimentation, plant growth, nutrients cycle/fate/transport, denitrification and karst phenomena). This research stems from the need to provide robust and suitable model assessment for making sound management, policy and regulatory decisions. Several innovations were introduced in the modeling approach aimed both to improve model structure and calibration procedure. First of all, modifications of SWAT model were applied to produce new useful outputs for calibration and interpretation of specific processes. New algorithms for the calculation of hillslope length parameter and LS factor were also proposed and tested, as well as a new MUSLE equation. Furthermore, karst processes were represented using the KSWAT model, a combination of SWAT with a karst-flow model. Concerning the calibration/validation, a process-based approach was developed involving both hard (i.e. long time series in multiple gauging stations) and soft data (i.e. literature information of a specific process within a water, sediment, or nutrient balance that may not be directly measured within the study area, e.g. average annual estimate of denitrification) for a threefold objective: to match well the observations, to understand the processes within a basin and to provide accurate cost-benefit scenarios analysis for achieving the goals of the main European Directives. The proposed systematic modeling approach consists on different aspects: the definition of a process-based calibration and validation (C/V) strategy for quantity (streamflow and its components) and quality aspects (sediment and nutrients); detailed study for representing hydrological processes at different climate regimes and in karst dominant morphologies; validation of water balance components using a Budyko framework approach; the inter-model-comparison of outputs 2 (Benchmarking approach); the definition of a suitable model setup based on a sensitivity analysis of derived topographic attributes from different Digital Elevation Model (DEM) pixel size; the definition of cost-effective measures for the Best Management Practices (BMPs) implementation. Five SWAT model case studies were used to illustrate these topics covering approximately 55% of Europe Union. The Iberian (556,000 km2) and the Scandinavia (1,000,000 km2) Peninsulas were selected to test the C/V strategy in different climate regimes, while the Danube River Basin (800,000 km2), as well as the Upper Danube (132,000 km2), were considered as strategic largesocioeconomic-heterogeneous areas for investigating the main key topics of the procedure through water quantity and quality assessment. The Crete Island (8,400 km2) was instead selected as representative for karst phenomena assessment, as it is covered more than 40% by karst features. The analysis of these SWAT model applications has shown that the processbased C/V strategy is able to obtain good performance statistics and to gain good knowledge of each hydrological process through the analysis of temporal and spatial variations of calibrated streamflow in different large regions, characterized by heterogeneous spatial topography, land uses, soils and different climate regimes. Furthermore, the analysis of the main components of the water balance (evapotranspiration and baseflow) via Budyko framework highlighted the difficulties of SWAT model to predict correctly the baseflow in regulated mountainous basins and the dependence of the procedure on the number and spatial distribution of gauging stations and on anthropogenic water storage impact, as well as the water diversions. It was also observed that the predicted streamflow at large-scale is not affected by DEM pixel size (both with 25 m and 100 m DEM pixel size) and SWAT topographic attributes (e.g. slope and hillslope length). Conversely, the streamflow components resulted markedly affected by the change of the hillslope length parameter calculation based on DEM pixel size, highlighting the need to improve the current SWAT algorithm for a better representation of the streamflow components, as well as sediment yields via Modified Universal Soil Loss Equation (MUSLE). This equation was modified to reduce the sensitivity of sediment yields to the Hydrologic Response Units (HRUs) and slope-length factor (LS) obtaining robust simulation of sediment concentrations, yields and suitable budgets in large River Basins. Furthermore, it was demonstrated that SWAT is 3 able to reproduce the karst processes when opportunely adapted to reproduce the karst features and their intrinsic characteristics (such as fast infiltration in deep groundwater, movement of water in the karst conduits across subbasins not hydrologically connected, and the return of water as springs discharges in the rivers), thus increasing the reliability of water balance prediction in numerous river basins in Europe affected by karst water resources. As regards the water quality (sediment and nutrients), it was observed that only few watershed parameters were sensitive to calibration, increasing the difficult to represent the spatial variation of some processes in large-areas, such as the denitrification and sediment transport in the river. However, the monthly seasonal variation of total nitrogen and phosphorous concentrations were well reproduced at multi-gauging stations, given a substantial control of pollution as directly request by the European Directives (i.e. Drinking Water Directive, 98/83/EC). Furthermore, the inter-model comparisons of nutrient loads confirmed the ability of SWAT model to predict comparable nutrient loads in large–river basins, albeit the need to collect more environmental data emerged. Finally, the proposed multi-objective optimization tool for BMPs implementation in SWAT was recognized as a very useful tool in identifying efficient scenarios, related to reduction of mineral fertilization and Waste Water Treatment Plants (WWTPs) upgrading, providing significantly nutrients concentration reduction with the best cost–effectiveness. These findings can be also summarised as several useful recommendations for SWAT modellers. In conclusion, the proposed systematic approach for C/V procedure with SWAT has shown to be pedagogic and a powerful tool both for scientists, policy makers and also stakeholders, and could be extended to other hydrological and water quality models with similar structure as SWAT.File | Dimensione | Formato | |
---|---|---|---|
PHD_Thesis_Malago_Mar15_2016_PDFA.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico senza Copyright
Dimensione
20.72 MB
Formato
Adobe PDF
|
20.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.