In recent years, intensive scientific research efforts have been made in the areas of nanostructured materials. In their broadest definition, materials with a nanometer-sized microstructure are called “Nanostructured Materials” (NMs). This very general criterion actually includes very diverse physical situations, such as nanostructures in the form of thin films, nanoparticle, nanoporous materials, nanocomposites and bulk nanocrystalline materials and they are of interest both for basic scientific research and technological applications. In particular, these materials have a range of physical and chemical properties that make them fascinating for the development of devices with high sensitivity, selectivity and efficiency. In fact, nanostructures are characterized by higher surface areas than do conventional materials (it means that these materials exhibit a very large number of atoms, or chemical species in general, likely to reduce the free energy of the system that is inserted through chemical bonds or physical interactions with other chemical species present in their vicinity). These surfaces have generally unique properties which greatly differ from those of bulk materials and which may even acquire a characteristic size dependence at the nanometer scale. Consequently, nanoporous and nanostructured materials are ideal candidates for surface-environment interactions such as adsorption. For this reason, the study of the adsorption on nanostructured materials is an area of increasing importance to understanding, creating and improving materials for technological applications in chemical production, environmental control, photovoltaic and energy systems. In this work we have focused our attention on the adsorption properties of nanostructured materials belonging two different classes, namely nanoparticles and nanoporous materials. Both types of nanostructured materials present an high surface areas obtained either by fabricating small particles where the surface-to-volume ratio of the particles is high (nanoparticles) or by creating materials where the void surface area (pores) is high compared to the amount of bulk support material (nanoporous). Aim of this study is the evaluation of the performances of these nano-adsorbents for their applicability in remediation technologies of natural waters and as medium for enrichment step of analytical procedures. For that which concerns nanoparticles, the adsorption/desorption properties of gold nanoparticles towards labelled nucleosides and oligonucleotides were determined to examine their applicability in pre-concentration and/or clean-up step of analysis of biological complex samples. In particular, in this work, gold nanoparticles were employed to improve the sensitivity of the micellar electrokinetic chromatography (MEKC) analytical method. The pre-concentration based on micro solid phase extraction (µSPE) with gold nanoparticles was followed by on-line sample pre-concentration realized by reversed electrode polarity stacking mode (REPSM). Under the optimum conditions, enrichment factors were obtained in the range from 360 to 400, the limits of detection (LODs) at a signal-to-noise ratio of 3 ranged from 2 to 5 nM and the relative recoveries of biological molecules from water samples were 95–103%. The proposed method provided high enrichment factors, good precision and accuracy with a short analysis time and, on the basis of the advantages of simplicity, high selectivity, high sensitivity and good reproducibility, the developed methodology may have great potential for biochemical applications. Furthermore, the diffusion behaviour of nanoparticles-drug adducts was investigated for its importance in the development of drug delivery systems. Because nucleoside analogues are potential anticancer and/or antiviral agents, their solubility and transport could be improved by inclusion inside the cyclodextrin cavity. In view of such kind of applications we investigated the ability of gold nanoparticles superficially modified with cyclodextin functionalized -SH to include the deoxycytidine. Complexation phenomena were detected by measuring the diffusion coefficients of the considered nucleoside and of its cyclodextrin-capped gold nanoparticles adducts. The diffusion coefficients of the single components and of the mixtures were estimated through Taylor Dispersion Analysis. This study allowed to determine others important parameters characterizing the system, such as the ligand fraction of the biological molecule inside the cyclodextrin cavity and the hydrodynamic radius of the nanoparticles. For that which concerns nanoporous materials we focused our attention on the adsorption properties of two hydrophobic zeolites (ZSM-5 and zeolite Y) towards organic pollutants for investigate their applicability in water remediation technologies. Volatile Organic Compounds (VOCs) are water pollutants of concerns, due to their frequent and widespread occurrence in natural water and their toxicity that can cause serious risk to human health. For this reason different remediation technologies have been proposed for their removal from the environment and, among them, adsorption was demonstrated to be a simple, low cost and effective technique. The adsorption isotherms, the kinetics and the thermodynamics of the adsorption process of single component pollutants onto the different zeolites have been determined. In order to better describe the phenomena also the framework structural modifications and the localization of the pollutant molecules were investigated. Finally, the adsorption efficiency of the regenerated material after the thermal treatment was evaluated. This study demonstrated that zeolites can be re-used for various adsorption cycles with clear benefits on the cost and performance of the process. Generally multiple sorbates often coexist in the environment, for this reason quantifying competitive interactions is important to predict the adsorption capability of materials for complex aqueous mixtures. At low concentrations (usually found in surface waters), the competitive phenomena are not expected to be significant in the adsorption process. However, in the case of a highly concentrated solutions a full understanding of the competitive interactions among adsorbates would be necessary to predict adsorbent performances. Similarly to what made for single component, also for binary mixtures the adsorption performances of nanoporous materials were determined by competitive adsorption isotherms providing to the zeolite selectivity. The system pollutant mixturezeolite was finally examined by a structural determinations to get a better understanding of the host guest interactions.

Negli ultimi anni, la comunità scientifica ha compiuto numerosi sforzi in settori di ricerca riguardanti i materiali nanostrutturati. Nella loro definizione più ampia, materiali con almeno una dimensione dell’ordine dei nanometri sono chiamati "Materiali Nanostrutturati" (MNs). Questa classificazione generale comprende realtà fisiche molto diverse tra loro, quali nanostrutture in forma di film sottili, nanoparticelle, materiali nanoporosi, nanocompositi e materiali nanocristallini, questi MNs sono di notevole interesse sia per la ricerca scientifica sia per applicazioni tecnologiche. In particolare, i Mns possiedono proprietà fisiche e chimiche che li rendono interessanti per lo sviluppo di dispositivi con elevata sensibilità, selettività ed efficienza. Infatti, essi sono caratterizzati da superfici superiori rispetto ai materiali convenzionali (ovvero presentano un gran numero di atomi o, più genericamente, specie chimiche in superficie, rispetto a materiali convenzionali, che consentono di ridurre l'energia libera del sistema attraverso legami chimici o interazioni fisiche con altre specie chimiche presenti nelle vicinanze). Queste superfici presentano proprietà uniche e notevolmente diverse da quelle dei materiali bulk e possono eventualmente acquisire, in scala nanometrica, caratteristiche dipendenti dalle dimensioni. Di conseguenza, i materiali nanoporosi e nanostrutturati risultano essere candidati ideali per interazioni di tipo superficie-intorno chimico, quali l'adsorbimento. Per questo motivo, lo studio dell’adsorbimento di materiali nanostrutturati è un'area di crescente importanza per poter comprendere, creare e migliorare i materiali per applicazioni tecnologiche nella produzione chimica, nel controllo ambientale, nel fotovoltaico e nei sistemi energetici. In questo lavoro abbiamo focalizzato la nostra attenzione sulle proprietà di adsorbimento dei materiali nanostrutturati appartenenti a due classi diverse, e precisamente le nanoparticelle ed i materiali nanoporosi. Entrambi presentano un'elevata superficie ottenuta, nel primo caso, fabbricando piccole particelle in cui il rapporto superficie-volume è elevato (nanoparticelle) e nel secondo caso, creando materiali nei quali la superficie vuota (cioè i pori) è elevata rispetto alla quantità di materiale bulk di supporto (nanoporosi). Lo scopo di questo studio è stata la valutazione delle prestazioni di questi materiali nanoadsorbenti per la loro applicabilità in tecnologie di bonifica delle acque naturali e come mezzo per processi di arricchimento in metodologie analitiche. Per quanto riguarda le nanoparticelle, sono state determinate le proprietà di adsorbimento/desorbimento di nanoparticelle d'oro nei confronti di nucleosidi e oligonucleotidi modificati per valutarne l’applicabilità nelle fasi di pre-concentrazione e/o clean-up per l’analisi di campioni biologici complessi. In particolare, in questo lavoro, le nanoparticelle d’oro sono state impiegate per migliorare la sensibilità del metodo analitico micellar electrokinetic chromatography (MEKC). La pre-concentrazione basata sulla micro estrazione in fase solida (µSPE) con nanoparticelle d'oro è stata poi seguita da una preconcentrazione on-line del campione realizzata utilizzando la modalità reversed electrode polarity stacking mode (REPSM). Nelle condizioni ottimali, sono stati ottenuti fattori di arricchimento nel range da 360 a 400, i limiti di rilevabilità (LOD) con un rapporto segnale-rumore di 3 variavano da 2 a 5 nM ed i relativi recuperi di molecole biologiche da campioni acquosi sono stati dell’ordine del 95-103%. Il metodo proposto ha dimostrato elevati fattori di arricchimento, buona precisione e accuratezza in un breve tempo di analisi e, sulla base dei vantaggi di semplicità, elevata selettività e sensibilità e buona riproducibilità, può quindi avere un grande potenziale per applicazioni biochimiche. Inoltre, è stato studiato il comportamento diffusivo di addotti nanoparticelle-farmaco per l’importanza che questo fenomeno ha nello sviluppo di sistemi di drug delivery. Poiché gli analoghi dei nucleosidi presentano una potenziale attività antitumorale e/o antivirale, la loro solubilità ed il trasporto possono essere migliorati attraverso l’inclusione nelle cavità delle ciclodestrine. In questo contesto, si è studiata la possibilità di utilizzare nanoparticelle d’oro superficialmente modificate con ciclodestrine funzionalizzate -SH per l’adsorbimento di deossicitidina. Il processo di complessazione è stato caratterizzato sulla base dei coefficienti di diffusione del nucleoside e degli addotti da esso formati con le nanoparticelle d'oro derivatizzate, ottenuti mediante Taylor Dispersion Analysis. Questo studio ha permesso inoltre di determinare altri importanti grandezze utili a descrivere il sistema, quali ad esempio la frazione legata di molecola biologica all'interno delle ciclodestrine ed il raggio idrodinamico delle nanoparticelle. Per quel che riguarda i materiali nanoporosi ci siamo concentrati sulle proprietà adsorbenti di due zeoliti idrofobiche (ZSM-5 e zeolite Y) nei confronti di inquinanti organici per verificarne l’eventuale applicabilità nel campo delle tecnologie di bonifica delle acque. I Composti Organici Volatili (VOCs) sono sostanze inquinanti di particolare interesse a causa della loro frequente e diffusa presenza nelle acque naturali e della loro tossicità che può causare gravi rischi per la salute umana. Per questo motivo sono state proposte differenti tecnologie per la loro rimozione dall'ambiente e, tra queste, l’adsorbimento si è dimostrato essere una tecnica semplice, a basso costo ed efficace. Relativamente all’adsorbimento dei singoli inquinanti sulle zeoliti sono stati determinate le isoterme di adsorbimento, la cinetica e la termodinamica del processo e, per meglio descrivere il fenomeno, sono state ottenute informazioni anche sulle modificazioni strutturali e sulla localizzazione delle molecole. Infine, è stata valutata l'efficienza di adsorbimento del materiale rigenerato dopo trattamento termico la quale ha dimostrato che le zeoliti possono essere riutilizzate per diversi cicli di adsorbimento con evidenti benefici sul costo e sulle prestazioni del processo. Generalmente gli inquinanti spesso coesistono in miscele nei comparti ambientali, per questo motivo è importante quantificare le interazioni competitive per prevedere la capacità di adsorbimento dei materiali nei confronti di miscele acquose complesse, che meglio simulano le condizioni riscontrate in natura. A basse concentrazioni (paragonabili a quelle generalmente riscontrate nelle acque superficiali), i fenomeni competitivi non dovrebbero giocare un ruolo significativo nel processo di adsorbimento, a causa dell’eccesso di siti di adsorbimento. Tuttavia, nel caso di un soluzioni altamente concentrate (sversamenti accidentali) o di esaurimento dell’adsorbente che si realizza ad esempio, durante il tempo di vita del materiale adsorbente, questi fenomeni competitivi possono rivestire un ruolo dominante. Analogamente a quanto fatto per i sistemi monocomponente, anche per le miscele binarie di inquinanti sono state determinate le prestazioni dei materiali nanoporosi mediante isoterme di adsorbimento competitivo ottenendo anche informazioni relativamente alla selettività zeolite. Il sistema miscela di inquinanti-zeolite è stato infine esaminato anche dal punto di vista strutturale per ottenere una migliore comprensione delle interazioni host-guest.

Adsorption of organic compounds on microporus and nanostructured materials

BOSI, VALENTINA
2016

Abstract

In recent years, intensive scientific research efforts have been made in the areas of nanostructured materials. In their broadest definition, materials with a nanometer-sized microstructure are called “Nanostructured Materials” (NMs). This very general criterion actually includes very diverse physical situations, such as nanostructures in the form of thin films, nanoparticle, nanoporous materials, nanocomposites and bulk nanocrystalline materials and they are of interest both for basic scientific research and technological applications. In particular, these materials have a range of physical and chemical properties that make them fascinating for the development of devices with high sensitivity, selectivity and efficiency. In fact, nanostructures are characterized by higher surface areas than do conventional materials (it means that these materials exhibit a very large number of atoms, or chemical species in general, likely to reduce the free energy of the system that is inserted through chemical bonds or physical interactions with other chemical species present in their vicinity). These surfaces have generally unique properties which greatly differ from those of bulk materials and which may even acquire a characteristic size dependence at the nanometer scale. Consequently, nanoporous and nanostructured materials are ideal candidates for surface-environment interactions such as adsorption. For this reason, the study of the adsorption on nanostructured materials is an area of increasing importance to understanding, creating and improving materials for technological applications in chemical production, environmental control, photovoltaic and energy systems. In this work we have focused our attention on the adsorption properties of nanostructured materials belonging two different classes, namely nanoparticles and nanoporous materials. Both types of nanostructured materials present an high surface areas obtained either by fabricating small particles where the surface-to-volume ratio of the particles is high (nanoparticles) or by creating materials where the void surface area (pores) is high compared to the amount of bulk support material (nanoporous). Aim of this study is the evaluation of the performances of these nano-adsorbents for their applicability in remediation technologies of natural waters and as medium for enrichment step of analytical procedures. For that which concerns nanoparticles, the adsorption/desorption properties of gold nanoparticles towards labelled nucleosides and oligonucleotides were determined to examine their applicability in pre-concentration and/or clean-up step of analysis of biological complex samples. In particular, in this work, gold nanoparticles were employed to improve the sensitivity of the micellar electrokinetic chromatography (MEKC) analytical method. The pre-concentration based on micro solid phase extraction (µSPE) with gold nanoparticles was followed by on-line sample pre-concentration realized by reversed electrode polarity stacking mode (REPSM). Under the optimum conditions, enrichment factors were obtained in the range from 360 to 400, the limits of detection (LODs) at a signal-to-noise ratio of 3 ranged from 2 to 5 nM and the relative recoveries of biological molecules from water samples were 95–103%. The proposed method provided high enrichment factors, good precision and accuracy with a short analysis time and, on the basis of the advantages of simplicity, high selectivity, high sensitivity and good reproducibility, the developed methodology may have great potential for biochemical applications. Furthermore, the diffusion behaviour of nanoparticles-drug adducts was investigated for its importance in the development of drug delivery systems. Because nucleoside analogues are potential anticancer and/or antiviral agents, their solubility and transport could be improved by inclusion inside the cyclodextrin cavity. In view of such kind of applications we investigated the ability of gold nanoparticles superficially modified with cyclodextin functionalized -SH to include the deoxycytidine. Complexation phenomena were detected by measuring the diffusion coefficients of the considered nucleoside and of its cyclodextrin-capped gold nanoparticles adducts. The diffusion coefficients of the single components and of the mixtures were estimated through Taylor Dispersion Analysis. This study allowed to determine others important parameters characterizing the system, such as the ligand fraction of the biological molecule inside the cyclodextrin cavity and the hydrodynamic radius of the nanoparticles. For that which concerns nanoporous materials we focused our attention on the adsorption properties of two hydrophobic zeolites (ZSM-5 and zeolite Y) towards organic pollutants for investigate their applicability in water remediation technologies. Volatile Organic Compounds (VOCs) are water pollutants of concerns, due to their frequent and widespread occurrence in natural water and their toxicity that can cause serious risk to human health. For this reason different remediation technologies have been proposed for their removal from the environment and, among them, adsorption was demonstrated to be a simple, low cost and effective technique. The adsorption isotherms, the kinetics and the thermodynamics of the adsorption process of single component pollutants onto the different zeolites have been determined. In order to better describe the phenomena also the framework structural modifications and the localization of the pollutant molecules were investigated. Finally, the adsorption efficiency of the regenerated material after the thermal treatment was evaluated. This study demonstrated that zeolites can be re-used for various adsorption cycles with clear benefits on the cost and performance of the process. Generally multiple sorbates often coexist in the environment, for this reason quantifying competitive interactions is important to predict the adsorption capability of materials for complex aqueous mixtures. At low concentrations (usually found in surface waters), the competitive phenomena are not expected to be significant in the adsorption process. However, in the case of a highly concentrated solutions a full understanding of the competitive interactions among adsorbates would be necessary to predict adsorbent performances. Similarly to what made for single component, also for binary mixtures the adsorption performances of nanoporous materials were determined by competitive adsorption isotherms providing to the zeolite selectivity. The system pollutant mixturezeolite was finally examined by a structural determinations to get a better understanding of the host guest interactions.
PASTI, Luisa
CAVAZZINI, Alberto
BIGNOZZI, Carlo Alberto
File in questo prodotto:
File Dimensione Formato  
Valentina Bosi tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 19.69 MB
Formato Adobe PDF
19.69 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403384
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact