Meeting the demand of a global energy thirst, while avoiding environmental damages, poses a major scientific and societal challenge for our future. Hydrocarbons energy sources will continue to play the major role on the next few decades, but their costs are doomed to increase and their availability decrease. Besides fossil fuels, there are many other power sources like nuclear fission, wind, biomass and geothermal, but in the long term the most appealing and widely distributed is solar, providing ~10000 times the energy currently consumed worldwide. In order to serve as a primary energy source, solar must be stored, with appropriate processes, into high-energy chemicals, for its utilization in power plants or in secondary chemical processes. This leads to the concepts of “artificial photosynthesis” and “solar fuels”, having, as a main target, the photoinduced water splitting for hydrogen production. Schematic semiconductor based hybrid interface for photoinduced water splitting. In principle, semiconductor based devices provide the most straightforward route to a cheap and tunable process for the direct conversion of sunlight into solar fuels, but, in order to obtain significant efficiencies, they must satisfy a number of kinetic and thermodynamic constraints, which pose a great chemical challenge. Scope of this Ph.D. work was the preparation of photoelectroactive substrates, based on wide band-gap semiconductor electrodes, functionalized with molecular sensitizers and catalysts, where both species operate in a concerted way to carry out the electron transfer events at the basis of the artificial photosynthetic process, thus driving water oxidation while hydrogen is simply evolved at a dark catalytic counter electrode. Several functionalization approaches of semiconductor electrodes were explored, and the resulting devices were fully characterized by spectroscopic, electrochemical and photoelectrochemical experiments. After discussing some general notions about the exploitation of artificial photosynthetic processes (Chapter 1) and on the main experimental techniques applied during this Ph.D. thesis (Chapter 2), the study of the photoelectroactive systems is described. In Chapter 3 it is reported the modification of TiO2 photoanodes with a new ruthenium based assembly, constituted by a sensitizer and catalyst units linked together. The photoelectrochemical results demonstrated that the binuclear complex was able to inject electrons into the semiconductor, but was not able to drive photoinduced water oxidation with a significant improvement with respect to sensitizer unit alone. This was attributed to the unfavourable competition of the charge separation with recombination processes and to the demanding thermodynamics for generating the high-valent Ru(V), which was individuated as the active catalytic intermediate for water oxidation. The unsatisfactory results obtained with the binuclear complex, lead us to consider the co-adsorption of independent sensitizing and catalytic species which represents a simpler and potentially more profitable approach. In Chapter 4 it is reported the modification of nanocrystalline WO3 photoanodes with an organic sensitizer (perylene bisimide). Under visible irradiation, the dye excited state underwent oxidative quenching by electron injection into WO3, leaving a strongly positive hole (1.7 V vs. SCE), which allows to drive demanding photo-oxidation reactions in photoelectrochemical cells. The co-adsorption of IrO2 nanoparticles, acting as water oxidation catalysts on the sensitized electrodes, led to a four fold enhancement in photoanodic current, consistent with hole transfer from oxidized dye to IrO2. Interesting results were also achieved by using an anionic molecular catalyst (tetra-ruthenium polyoxometalate), producing performances comparable to some of the best literature results obtained in the heterogeneous phase with identical or similar catalysts. In Chapter 5, the charge transfer dynamics on TiO2 substrates, involving a new phosphonated Ru(II) polypiridine sensitizer, developed to generate highly oxidizing photoholes for water oxidation, were studied. Under illumination, in presence of LiI as a sacrificial electron donor, an anodic photocurrent of 0.2 mA/cm2 was achieved, with correspondingly low IPCEs. Interestingly, the photoanodic response were largely increased in the presence of sodium ascorbate, with photocurrent undergoing a four to six fold enhancement, depending on the ascorbate concentration, explainable with a modification of the charge injection mechanism. For the first time in heterogeneous phase, a non ambiguous evidence for the occurrence of dye excited state reductive quenching (anti biomimetic pathway) was provided, and the possibility of exploiting such charge transfer process is discussed. Lastly, experiments performed with sensitized SnO2 photoanodes, where the Ru(II) dye undergoes the usual oxidative quenching, allowed to verify the interaction with co-adsorbed IrO2 nanoparticles, capable to drive photoinduced water oxidation. Finally, in Chapter 6 the pulsed-laser deposition (PLD) was considered as valuable tool for the preparation of nanostructured amorphous Fe2O3 catalyst, for the functionalization of conductive surface. The resulting electrodes, based on earth-abundant and non-hazardous iron metal, was able to sustain high current densities (up to 20 mA/cm2), at reasonably low applied potential bias, for more than 1 hour when employed as anodes for electrochemical water oxidation at pH 11.8. The good catalytic performance achieved proves the validity of PLD as a method to prepare nanostructured materials with good control over surface coverage and morphology. The methodology lends itself to the exploration of other metal oxide catalysts and to functionalization of other surfaces, among which the ohmic contact of multi-junction photovoltaic cells provide the most attractive example.

La soluzione al problema del fabbisogno energetico mondiale, evitando grandi danni ambientali, rappresenta la sfida scientifica, tecnologica e sociale dell’immediato futuro. Le risorse fossili continueranno a giocare ancora un grosso ruolo nei prossimi decenni, ma il loro costo è destinato a crescere, mentre la loro disponibilità a calare. Oltre ai combustibili fossili esistono anche molte altre risorse energetiche, come nucleare, eolico, biomasse e geotermico, tuttavia la più attraente, dal punto di vista dell’inesauribilità e distribuzione su larga scala, è l’energia solare. Tuttavia per essere utilizzata come risorsa primaria, l’energia solare deve essere immagazzinata, tramite appropriati processi, sotto forma di combustibili ad alto valore energetico, per l’utilizzo in centrali elettriche o in processi chimici secondari. Un esempio di “combustibile solare” è l’idrogeno, ottenuto dalla “fotosintesi artificiale” tramite scissione fotoindotta dell’acqua. Rappresentazione di una interfaccia ibrida, basata su elettrodi semiconduttori, per la scissione fotoindotta dell’acqua. I dispositivi a base di elettrodi semiconduttori rappresentano la via più semplice, economica e versatile, per la conversione diretta della luce solare in combustibili, ma, per ottenere efficienze significative, devono essere soddisfatte alcune limitazioni cinetiche e termodinamiche, le quali rappresentano ancora una sfida nel campo chimico e tecnologico. Scopo del mio lavoro compiuto all’interno del dottorato di ricerca è stata la preparazione di substrati fotoelettroattivi, costituiti da elettrodi semiconduttori, funzionalizzati con sensibilizzatori molecolari e catalizzatori, in modo che entrambe le specie potessero lavorare in modo sinergico, allo scopo di attivare i processi di trasferimento elettronico necessari per la fotosintesi artificiale, ed ottenere così l’ossidazione dell’acqua all’interno di una cella fotoelettrochimica, mentre l’idrogeno viene semplicemente sviluppato al controelettrodo non illuminato. Diversi approcci sono stati tentati per funzionalizzare i semiconduttori, e gli elettrodi ottenuti sono stati ampiamente caratterizzati tramite esperimenti spettroscopici, elettrochimici e fotoelettrochimici. Dopo una prima discussione generale riguardo i processi fotosintetici artificiali (Capitolo 1) e sulle tecniche sperimentali applicate in questo lavoro di tesi (Capitolo 2), sono stati descritti i sistemi fotoelettroattivi studiati. Nel Capitolo 3 è riportata la sintesi e la caratterizzazione di una nuova diade a base di rutenio, formata da un cromoforo e un catalizzatore, direttamente legati tra loro, per la sensibilizzazione di fotoanodi di TiO2. I risultati fotoelettrochimici hanno evidenziato che il complesso binucleare è in grado di iniettare elettroni nel semiconduttore, ma non si ha un miglioramento nei confronti dell’ossidazione dell’acqua, rispetto al cromoforo da solo. Questo fenomeno è stato attribuito ai marcati processi di ricombinazione che sfavoriscono l’iniezione di carica sul semiconduttore, e all’impossibilità termodinamica di raggiungere stati alto-valenti del metallo (Ru(V)), responsabile dell’ossidazione dell’acqua. I risultati insoddisfacenti ottenuti con questo complesso binucleare hanno portato a considerare un metodo di funzionalizzazione alternativo. Il co-adsorbimento contemporaneo di indipendenti unità, cromoforica e catalizzatrice, non legate tra loro, rappresenta un approccio semplice e potenzialmente funzionale. Nel Capitolo 4 è riportata la sensibilizzazione di fotoanodi di WO3 nanocristallino con un colorante organico (perilene bis-immide). Sotto irraggiamento di luce visibile, lo stato eccitato del colorante subisce uno spegnimento ossidativo dovuto all’iniezione elettronica sul WO3, lasciando una buca fortemente positiva sul perilene (1.7 V vs. SCE) potenzialmente in grado di condurre reazioni di ossidazione in celle fotoelettrochimiche. Il successivo co adsorbimento di nanoparticelle di IrO2, come catalizzatore per l’ossidazione dell’acqua, ha portato ad un incremento di quattro volte della fotocorrente anodica, consistente con il trasferimento di buca dal colorante ossidato alle nanoparticelle. Risultati interessanti sono stati raggiunti anche con un catalizzatore molecolare anionico (poliossometallato di rutenio), ottenendo prestazioni comparabili a quelle riportate in letteratura, in fase eterogenea, con identici o simili catalizzatori. Nel Capitolo 5, sono state studiate le dinamiche di trasferimento di carica, su substrati di TiO2, da parte di un nuovo colorante polipiridinico fosfonato a base di rutenio, progettato e sintetizzato per foto-generare buche altamente ossidanti per la scissione dell’acqua. Sotto illuminazione, in presenza di ioduro di litio come agente sacrificale, è stata ottenuta una fotocorrente anodica di 0.2 mA/cm2, ma con bassi valori di fotoazione (IPCE). Interessante la risposta fotoanodica in presenza di ascorbato di sodio, che risulta aumentata di quattro/sei volte, a seconda della concentrazione di sacrificale, esplicabile solo assumendo una variazione nel meccanismo di iniezione di carica. Per la prima volta in fase eterogenea, è stata dimostrata la presenza dello spegnimento dello stato eccitato del colorante per via riduttiva (processo anti-biomimetico) ad opera dell’ascorbato di sodio. Gli esperimenti condotti su fotoanodi di SnO2, dove il colorante subisce il classico spegnimento ossidativo, hanno permesso di verificare l’interazione con nanoparticelle di IrO2 co-adsorbite, portando all’ossidazione dell’acqua. Infine, nel Capitolo 6 è stata valutata la deposizione laser-pulsata (PLD) come valido metodo di sintesi di nanostrutture amorfe di Fe2O3, da utilizzare come catalizzatore per la funzionalizzazione di substrati conduttivi. Gli elettrodi così ottenuti, costituiti principalmente da ferro, metallo molto abbondante ed atossico, sono stati in grado di sostenere elevate correnti (fino a 20 mA/cm2), con un modesto potenziale applicato a pH 11.8, per più di un’ora, come anodi per l’ossidazione elettrochimica dell’acqua. Le ottime prestazioni ottenute confermano la validità della PLD come metodo di preparazione per materiali nanostrutturati, con un buon controllo sul grado di ricoprimento superficiale e la morfologia. Tramite questo approccio è possibile esplorare anche altri ossidi metallici catalizzatori e funzionalizzare nuove superfici, come per esempio celle fotovoltaiche a tripla giunzione al silicio, per ottenere quindi l’ossidazione fotoindotta dell’acqua.

Preparation and characterization of Photoelectroactive substrates for water splitting and hydrogen production

RONCONI, Federico
2016

Abstract

La soluzione al problema del fabbisogno energetico mondiale, evitando grandi danni ambientali, rappresenta la sfida scientifica, tecnologica e sociale dell’immediato futuro. Le risorse fossili continueranno a giocare ancora un grosso ruolo nei prossimi decenni, ma il loro costo è destinato a crescere, mentre la loro disponibilità a calare. Oltre ai combustibili fossili esistono anche molte altre risorse energetiche, come nucleare, eolico, biomasse e geotermico, tuttavia la più attraente, dal punto di vista dell’inesauribilità e distribuzione su larga scala, è l’energia solare. Tuttavia per essere utilizzata come risorsa primaria, l’energia solare deve essere immagazzinata, tramite appropriati processi, sotto forma di combustibili ad alto valore energetico, per l’utilizzo in centrali elettriche o in processi chimici secondari. Un esempio di “combustibile solare” è l’idrogeno, ottenuto dalla “fotosintesi artificiale” tramite scissione fotoindotta dell’acqua. Rappresentazione di una interfaccia ibrida, basata su elettrodi semiconduttori, per la scissione fotoindotta dell’acqua. I dispositivi a base di elettrodi semiconduttori rappresentano la via più semplice, economica e versatile, per la conversione diretta della luce solare in combustibili, ma, per ottenere efficienze significative, devono essere soddisfatte alcune limitazioni cinetiche e termodinamiche, le quali rappresentano ancora una sfida nel campo chimico e tecnologico. Scopo del mio lavoro compiuto all’interno del dottorato di ricerca è stata la preparazione di substrati fotoelettroattivi, costituiti da elettrodi semiconduttori, funzionalizzati con sensibilizzatori molecolari e catalizzatori, in modo che entrambe le specie potessero lavorare in modo sinergico, allo scopo di attivare i processi di trasferimento elettronico necessari per la fotosintesi artificiale, ed ottenere così l’ossidazione dell’acqua all’interno di una cella fotoelettrochimica, mentre l’idrogeno viene semplicemente sviluppato al controelettrodo non illuminato. Diversi approcci sono stati tentati per funzionalizzare i semiconduttori, e gli elettrodi ottenuti sono stati ampiamente caratterizzati tramite esperimenti spettroscopici, elettrochimici e fotoelettrochimici. Dopo una prima discussione generale riguardo i processi fotosintetici artificiali (Capitolo 1) e sulle tecniche sperimentali applicate in questo lavoro di tesi (Capitolo 2), sono stati descritti i sistemi fotoelettroattivi studiati. Nel Capitolo 3 è riportata la sintesi e la caratterizzazione di una nuova diade a base di rutenio, formata da un cromoforo e un catalizzatore, direttamente legati tra loro, per la sensibilizzazione di fotoanodi di TiO2. I risultati fotoelettrochimici hanno evidenziato che il complesso binucleare è in grado di iniettare elettroni nel semiconduttore, ma non si ha un miglioramento nei confronti dell’ossidazione dell’acqua, rispetto al cromoforo da solo. Questo fenomeno è stato attribuito ai marcati processi di ricombinazione che sfavoriscono l’iniezione di carica sul semiconduttore, e all’impossibilità termodinamica di raggiungere stati alto-valenti del metallo (Ru(V)), responsabile dell’ossidazione dell’acqua. I risultati insoddisfacenti ottenuti con questo complesso binucleare hanno portato a considerare un metodo di funzionalizzazione alternativo. Il co-adsorbimento contemporaneo di indipendenti unità, cromoforica e catalizzatrice, non legate tra loro, rappresenta un approccio semplice e potenzialmente funzionale. Nel Capitolo 4 è riportata la sensibilizzazione di fotoanodi di WO3 nanocristallino con un colorante organico (perilene bis-immide). Sotto irraggiamento di luce visibile, lo stato eccitato del colorante subisce uno spegnimento ossidativo dovuto all’iniezione elettronica sul WO3, lasciando una buca fortemente positiva sul perilene (1.7 V vs. SCE) potenzialmente in grado di condurre reazioni di ossidazione in celle fotoelettrochimiche. Il successivo co adsorbimento di nanoparticelle di IrO2, come catalizzatore per l’ossidazione dell’acqua, ha portato ad un incremento di quattro volte della fotocorrente anodica, consistente con il trasferimento di buca dal colorante ossidato alle nanoparticelle. Risultati interessanti sono stati raggiunti anche con un catalizzatore molecolare anionico (poliossometallato di rutenio), ottenendo prestazioni comparabili a quelle riportate in letteratura, in fase eterogenea, con identici o simili catalizzatori. Nel Capitolo 5, sono state studiate le dinamiche di trasferimento di carica, su substrati di TiO2, da parte di un nuovo colorante polipiridinico fosfonato a base di rutenio, progettato e sintetizzato per foto-generare buche altamente ossidanti per la scissione dell’acqua. Sotto illuminazione, in presenza di ioduro di litio come agente sacrificale, è stata ottenuta una fotocorrente anodica di 0.2 mA/cm2, ma con bassi valori di fotoazione (IPCE). Interessante la risposta fotoanodica in presenza di ascorbato di sodio, che risulta aumentata di quattro/sei volte, a seconda della concentrazione di sacrificale, esplicabile solo assumendo una variazione nel meccanismo di iniezione di carica. Per la prima volta in fase eterogenea, è stata dimostrata la presenza dello spegnimento dello stato eccitato del colorante per via riduttiva (processo anti-biomimetico) ad opera dell’ascorbato di sodio. Gli esperimenti condotti su fotoanodi di SnO2, dove il colorante subisce il classico spegnimento ossidativo, hanno permesso di verificare l’interazione con nanoparticelle di IrO2 co-adsorbite, portando all’ossidazione dell’acqua. Infine, nel Capitolo 6 è stata valutata la deposizione laser-pulsata (PLD) come valido metodo di sintesi di nanostrutture amorfe di Fe2O3, da utilizzare come catalizzatore per la funzionalizzazione di substrati conduttivi. Gli elettrodi così ottenuti, costituiti principalmente da ferro, metallo molto abbondante ed atossico, sono stati in grado di sostenere elevate correnti (fino a 20 mA/cm2), con un modesto potenziale applicato a pH 11.8, per più di un’ora, come anodi per l’ossidazione elettrochimica dell’acqua. Le ottime prestazioni ottenute confermano la validità della PLD come metodo di preparazione per materiali nanostrutturati, con un buon controllo sul grado di ricoprimento superficiale e la morfologia. Tramite questo approccio è possibile esplorare anche altri ossidi metallici catalizzatori e funzionalizzare nuove superfici, come per esempio celle fotovoltaiche a tripla giunzione al silicio, per ottenere quindi l’ossidazione fotoindotta dell’acqua.
CARAMORI, Stefano
BIGNOZZI, Carlo Alberto
File in questo prodotto:
File Dimensione Formato  
Ronconi Federico XXVIII 2016_TESI PDF-A.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 15.77 MB
Formato Adobe PDF
15.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11392/2403303
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact