This thesis is devoted to describe study and realization of Laue lenses to be used in medical applications. Laue lenses exploit Bragg diffraction of high-energy radiation from crystals to focus a photon beam toward a small focal spot. It has been demonstrated that this capability can by exploited both in nuclear medicine and radiation therapy. In particular, a Laue lens capable of providing functional images with a resolution one order of magnitude better than that achievable through the conventional nuclear medicine diagnostic techniques (SPECT and PET) has been designed. Furthermore, a Laue lens has been proposed to focus for radiotherapy purpose the X-ray beam emitted by an X-ray tube. The lens provides a nearly monochromatic photon beam capable of imparting an high-dose to a tumour target while sparing surrounding healthy tissues. The design of both the lenses was carried out using two Monte Carlo simulation codes specifically written. These codes consider photon sources with an arbitrary spectral and spatial distribution, allow the use of crystals of various type and manage the interaction photon-crystal even taking into account the nonidealities. Finally, they calculate the phase space of the diffracted beam and the figures of merit of the lens. Crystals with curved diffracting planes emerged as the most effective optical elements for assembling a Laue lens. Some innovative bending techniques developed within the INFN-LOGOS project are presented. These techniques are based on carbon fibre deposition, ion implantation and sandblasting. Various crystalline samples have been produced through these techniques and tested with monochromatic and polychromatic X- and gamma-rays at the European Synchrotron Radiation Facility (ESRF) and at the Institut Laue-Langevin (ILL) in Grenoble, France. Moreover, a simple prototype of Laue lens for radiotherapy has been assembled and successfully tested by Sensor and Semiconductor Laboratory of Ferrara.
Questa tesi è dedicata a descrivere studio e realizzazione di lenti di Laue da usare in applicazioni mediche. Le lenti di Laue sfruttano la diffrazione di Bragg di radiazione altamente energetica nei cristalli per focalizzare un fascio di fotoni in un piccolo spot focale. E’ stato dimostrato che questa caratteristica può essere sfruttata sia in medicina nucleare che in radioterapia. In particolare, è stata progettata una lente di Laue capace di fornire immagini funzionali con una risoluzione un ordine di grandezza migliore rispetto a quella ottenibile attraverso le tecniche convenzionali di medicina nucleare diagnostica (SPECT e PET). Inoltre, è stata proposta una lente di Laue per focalizzare a scopo radioterapeutico il fascio di raggi-X emesso da un tubo a raggi-X. La lente fornisce un fascio di fotoni quasi monocromatico capace di impartire una alta dose ad un target tumorale risparmiando i tessuti sani circostanti. Il progetto di entrambi le lenti è stato condotto usando due codici di simulazione Monte Carlo appositamente sviluppati. I codici considerano sorgenti con distribuzione spettrale e spaziale arbitraria, permetto l’uso di cristalli di vario tipo e gestiscono l’interazione fotone-cristallo tenendo in considerazione le non-idealità. Infine, calcolano lo spazio delle fasi del fascio diffratto e le figure di merito della lente. I cristalli con piani di diffrazione curvi sono emersi come i più efficaci elementi ottici per assemblare una lente di Laue. Alcune tecniche innovative per la curvatura dei cristalli, sviluppate nell’ambio del progetto INFN-LOGOS, sono presentate. Queste tecniche sono basate sulla deposizione di fibre di carbonio, sull’impiantazione ionica e sulla sabbiatura. Vari campioni cristallini sono stati prodotti con queste tecniche e testati tramite diffrazione di fasci di raggi X e gamma monocromatici e policromatici presso l’European Synchrotron Radiation Facility (ESRF) e l’Institut Laue-Langevin (ILL) di Grenoble. Inoltre, un semplice prototipo e’ stato assemblato e testato con successo dal Laboratorio di Sensori e Semiconduttori di Ferrara.
Laue lenses to focus X- and gamma-ray beams for medical applications
PATERNO', Gianfranco
2016
Abstract
This thesis is devoted to describe study and realization of Laue lenses to be used in medical applications. Laue lenses exploit Bragg diffraction of high-energy radiation from crystals to focus a photon beam toward a small focal spot. It has been demonstrated that this capability can by exploited both in nuclear medicine and radiation therapy. In particular, a Laue lens capable of providing functional images with a resolution one order of magnitude better than that achievable through the conventional nuclear medicine diagnostic techniques (SPECT and PET) has been designed. Furthermore, a Laue lens has been proposed to focus for radiotherapy purpose the X-ray beam emitted by an X-ray tube. The lens provides a nearly monochromatic photon beam capable of imparting an high-dose to a tumour target while sparing surrounding healthy tissues. The design of both the lenses was carried out using two Monte Carlo simulation codes specifically written. These codes consider photon sources with an arbitrary spectral and spatial distribution, allow the use of crystals of various type and manage the interaction photon-crystal even taking into account the nonidealities. Finally, they calculate the phase space of the diffracted beam and the figures of merit of the lens. Crystals with curved diffracting planes emerged as the most effective optical elements for assembling a Laue lens. Some innovative bending techniques developed within the INFN-LOGOS project are presented. These techniques are based on carbon fibre deposition, ion implantation and sandblasting. Various crystalline samples have been produced through these techniques and tested with monochromatic and polychromatic X- and gamma-rays at the European Synchrotron Radiation Facility (ESRF) and at the Institut Laue-Langevin (ILL) in Grenoble, France. Moreover, a simple prototype of Laue lens for radiotherapy has been assembled and successfully tested by Sensor and Semiconductor Laboratory of Ferrara.File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico senza Copyright
Dimensione
41.09 MB
Formato
Adobe PDF
|
41.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.