Inspired by nature and pursuing the concrete option of an economy based on hydrogen as a fuel for the everyday energetic consumption, scientists from different fields have based their research activity on the possibility to decompose water in its elementary constituents using only sunlight as external energy supply. In the last four decades there has been an exciting growth of knowledge about semiconductor physico chemical properties with regard to their leading role in photo-electrochemical (PEC) device able to convert light into chemical energy stored in the bond between hydrogen atoms, in a more elegant and powerful way with respect to conventional photovoltaic technology. Metal oxides have been from the beginning the most examined materials for PEC application due to their great stability in aqueous solution and to the easy access to various nanostructured morphologies that guarantee good optical and catalytic properties. During my PhD I have investigated the charge transfer dynamics in hematite (α-Fe2O3) thin film electrodes modified with iron oxide-based structures by using mainly both AC/DC electrochemical techniques in combination with laser photolysis and spectroscopy for the morphological characterization. Hematite is a well known semiconductor able to drive the bias-assisted water oxidation reaction at its surface, although important drawbacks related to its poor charge transport properties have limited the overall efficiency achieved so far. Using cheap and environmentally safe starting materials and solution-based procedure for all the preparative and modification steps, we have been able to efficiently modify mesoporous iron oxide films achieving excellent performances in term of photocurrent generation and stability. Mechanistic and kinetic insights about the effect of an iron-based water oxidation catalyst and of a thin underlayer are fundamental to a deeper understanding of the photogenerated carriers fate for a more useful design of these electrodes. Besides electrochemical performance, the possibility to obtain efficient devices with common and simple procedures is a key point for a future and concrete implementation of this technology for a large scale application.
La possibilità di produrre idrogeno dalla scissione fotoindotta dell’acqua imitando ciò che la natura fa in ogni istante attraverso la fotosintesi, senza la necessità quindi di utilizzare alcuna fonte aggiuntiva di energia esterna, ha suscitato enorme interesse nella comunità scientifica, stimolata dal sogno di poter sviluppare una società che utilizzi idrogeno come fonte energetica primaria. Negli ultimi quattro decenni abbiamo assistito ad una straordinaria accelerazione nella razionalizzazione delle proprietà chimico-fisiche di materiali semiconduttori su cui si basano sistemi foto-elettrochimici adibiti alla conversione della luce solare in energia chimica e non in corrente elettrica da utilizzare istantaneamente, come nei comuni dispositivi fotovoltaici. Sin dai primi esperimenti di fotolisi, gli ossidi metallici sono stati i protagonisti di tali dispostivi, grazie alla loro eccellente stabilità in soluzioni acquose e alla possibilità di ottenere facilmente morfologie nano-strutturate che hanno garantito un notevole incremento in termini di assorbimento della radiazione luminosa e di capacità catalitiche nei confronti delle reazioni di riduzione ed ossidazione dell’acqua. Nel corso del mio Dottorato di Ricerca ho studiato le dinamiche di trasferimento di carica di elettrodi di ossido ferrico modificati con strutture sia amorfe che cristalline a base di ferro utilizzando, per la caratterizzazione, principalmente tecniche elettrochimiche sia in corrente continua che alternata, affiancate da spettroscopie di superficie e laser per una completa descrizione delle proprietà catalitiche. L’ossido ferrico è un materiale notoriamente impiegato per la foto-ossidazione dell’acqua, anche se la sua scarsa capacità di condurre e trasferire carica richiedono l’applicazione di un potenziale esterno. Utilizzando materiali non nocivi ed economici e semplici procedure in soluzione per la preparazione dei campioni e per le successive modifiche, siamo stati in grado di migliorare le prestazioni degli elettrodi sia in termini di foto-correnti generate che di stabilità, razionalizzando al contempo aspetti meccanicistici coinvolti nei processi di trasferimento di carica responsabili dell’ossidazione dell’acqua.
Surface and interface modification of nanostructured hematite for solar water splitting
DALLE CARBONARE, Nicola
2016
Abstract
Inspired by nature and pursuing the concrete option of an economy based on hydrogen as a fuel for the everyday energetic consumption, scientists from different fields have based their research activity on the possibility to decompose water in its elementary constituents using only sunlight as external energy supply. In the last four decades there has been an exciting growth of knowledge about semiconductor physico chemical properties with regard to their leading role in photo-electrochemical (PEC) device able to convert light into chemical energy stored in the bond between hydrogen atoms, in a more elegant and powerful way with respect to conventional photovoltaic technology. Metal oxides have been from the beginning the most examined materials for PEC application due to their great stability in aqueous solution and to the easy access to various nanostructured morphologies that guarantee good optical and catalytic properties. During my PhD I have investigated the charge transfer dynamics in hematite (α-Fe2O3) thin film electrodes modified with iron oxide-based structures by using mainly both AC/DC electrochemical techniques in combination with laser photolysis and spectroscopy for the morphological characterization. Hematite is a well known semiconductor able to drive the bias-assisted water oxidation reaction at its surface, although important drawbacks related to its poor charge transport properties have limited the overall efficiency achieved so far. Using cheap and environmentally safe starting materials and solution-based procedure for all the preparative and modification steps, we have been able to efficiently modify mesoporous iron oxide films achieving excellent performances in term of photocurrent generation and stability. Mechanistic and kinetic insights about the effect of an iron-based water oxidation catalyst and of a thin underlayer are fundamental to a deeper understanding of the photogenerated carriers fate for a more useful design of these electrodes. Besides electrochemical performance, the possibility to obtain efficient devices with common and simple procedures is a key point for a future and concrete implementation of this technology for a large scale application.File | Dimensione | Formato | |
---|---|---|---|
TESI-DALLE CARBONARE NICOLA.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico senza Copyright
Dimensione
32.39 MB
Formato
Adobe PDF
|
32.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.