Herpes simplex virus type 1 (HSV-1) is a human neurotropic virus whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. After initial infection and lytic multiplication at the body periphery the virus enters the sensory neurons that innervate the infected epithelia and, following retrograde transport, establishes a lifelong latent infection in sensory ganglia. Increasing evidences indicate that periodic sub-clinical reactivations in the CNS and peripheral nervous system may occur, with subsequent immune response and neurodegeneration, suggesting that HSV-1 is a risk factor in the pathogenesis of Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by progressive decline in cognitive functions leading to memory loss and dementia. The main pathological hallmarks of the disease are: chronic inflammation, calcium dyshomeostasis and the presence of the aberrant highly insoluble protein aggregates neurofibrillary tangles (NFT) and senile plaques (SP), respectively composed by the hyperphosphorylated protein tau (P-tau) and the amyloid-β peptide (Aβ). This work is focused on different aspects of the possible involvement of HSV in the pathogenesis of AD. In the first part, the molecular mechanisms that might induce pathological alterations, with a particular emphasis on protein tau and signalling, were investigated, in vitro, in several cell lines such as epithelial, neuroblastoma and primary neuronal cells derived from newborn 3xTG AD mouse model. Several studies have investigated the link between HSV-1 and phosphorylation of tau protein. To evaluate if the two viral kinases US3 and UL13 are involved in tau hyperphosphorylation, as suggested by the literature, mutant viruses lacking these genes and plasmid vectors for their expression in mammalian cells were generated. The phosphorylation status of tau was evaluated by immunofluorescence and immunoblot analysis. Antibodies directed against 2 out of the 85 possible phosphorylation sites failed to detect significant events of hyperphosphorylation, making impossible to establish a possible direct role of these two viral genes in this process. However, using the antibody Tau-1, directed against nuclear Tau, we have revealed strong differences between infected and uninfected cells. This antibody detects a nucleolar highly insoluble form of tau that is increased and redistributed throughout the whole nucleus after viral infection. Further analysis suggested us that these alterations could be related to a modification on chromatin status that favours viral reactivation. The increase of this particular insoluble form of tau can contribute to the formation of NFT. Alterations of intracellular Ca2+ homeostasis and signalling have also been implicated in AD pathogenesis. In fact, it is well known that intracellular Ca2+, besides playing an essential role in neuronal functions, is a key element of neuronal survival and death. Several studies have reported that HSV-1 binding to neuronal membrane induced membrane depolarization leading to increased neuronal excitability and triggering action potentials. Since, the binding of HSV virions to the cell membrane is mainly mediated by the viral envelope glycoprotein B (gB) we have studied the role of this protein in Ca2+ release. The attachment of gB to the cell surface is mediated by a first binding to heparan sulfate proteoglycan (HSPG), an ubiquitous cell membrane molecule, followed by the recognition of a receptor that can be different depending on the cell type. Similarly, it has been reported that Aβ can bind HSPG and the two proteins show a certain grade of homology. To evaluate if gB and/or HSPG binding site are involved in changes of the intracellular levels of Ca2+ we have utilized different cellular models and two Ca2+-sensitive probes. Analysis with Aequorin revealed that a soluble recombinant form of gB can induce Ca2+ release from intracellular stores, while FURA-2 showed that an HSV-1 mutant expressing a gB deleted for the HSPG binding site increases intracellular Ca2+ uptake, compared to wild type virus. These data demonstrate that gB is involved in the intracellular Ca2+ influx and that this is negatively regulated by the binding of the protein to HSPG. We can speculate that in pathological conditions HSV-1 causes functional changes Ca2+ dependent, in cortical neurons, that promote APP processing and Aβ production and excess of Aβ can compete with gB to bind to HSPG, thus resulting in a movement of Ca2+ higher than in normal infection. The second part of this work is focus on in vivo studies, using a reporter transgenic mouse model system, in order to have a wider comprehension of the correlation between HSV-1 and AD. This in vivo system utilizes a recombinant virus expressing CRE recombinase and the CRE reporter mouse strain Ai6. CRE recombinase mediates the permanent marking of infected cells, by the expression of the reporter gene. Trigeminal ganglia (TG) and brain slices of infected or uninfected adult Ai6 mice were analyzed by immunofluorescence assay until 126 days post-infection. Number of studies have revealed that HSV infection or reactivation was associated to neuroinflammation and to the appearance of AD several markers of neurodegeneration including Aβ and Tau hyperphosphorylation. Therefore, the pathological hallmarks analyzed in this system were the presence of neuroinflammation, SP and NFT. The results obtained in our studies have showed, in the areas affected by the virus infection, a strong activation of macrophages and microglia, cells of the innate immunity that orchestrate inflammation in the nervous system. On the other hand nor SP nor NFT formations were detected, suggesting that their outcome may require more time, different events of reactivation and/or other predisposing elements. The data presented in this work support the hypothesis that HSV-1 interferes with several cellular and systemic processes that in physiological conditions may be restored after acute phase of viral infection/reactivation. However these findings suggest that the alterations induced by the virus combined with ageing and other risk factors, can worsen a yet pathological situation, supporting the idea that HSV-1 is a relevant, although not essential, agent for the development of AD at different levels.

Herpes simplex virus di tipo 1 (HSV-1) è un virus umano neurotropico caratterizzato da un ciclo vitale basato su una lunga interazione con l’ospite, alternandosi tra infezione litica e latente. Dopo l’infezione iniziale e la replicazione, accompagnata da lisi cellulare, in zone periferiche del corpo il virus entra nei neuroni sensori che innervano l’epitelio infettato e, dopo un trasporto retrogrado, stabilisce un’infezione latente nei gangli sensori per tutta la vita. Un crescente numero di evidenze sperimentali indica che nel sistema nervoso centrale (SNC) e periferico (SNP) avvengono periodiche riattivazioni sub-cliniche, con conseguente risposta immune e neurodegenerazione, suggerendo che HSV-1 sia un fattore di rischio nella patogenesi del morbo di Alzheimer (AD). AD è una malattia neurodegenerativa caratterizzata da un progressivo declino nelle funzioni cognitive che porta alla perdita di memoria a demenza. Le principali caratteristiche patologiche della malattia sono: infiammazione cronica, disomeostasi del calcio e la presenza degli aggregati proteici altamente insolubili chiamati grovigli neurofibrillari (NFT) e placche senili (SP), rispettivamente composti da proteina tau iperfosforilata e dal peptide β-amiloide (Aβ). Questo lavoro è incentrato su diversi aspetti del possibile coinvolgimento di HSV nella patogenesi di AD. Nella prima parte viene descritta la ricerca sui meccanismi molecolari che possono indurrre alterazioni patologiche, con una particolare enfasi sulla proteina tau ed il segnale Ca2+, condotta in vitro su diverse linee cellulari, come cellule epiteliali, di neuroblastoma e colture primarie neuronali derivate da topi neonati del modello di AD 3xTG. Numerosi studi sono stati rivolti a identificare una relazione tra HSV-1 e la fosforilazione di tau. Per valutare se le due chinasi virali US3 e UL13 sono coinvolte nella iperfosforilazione di tau, come suggerito dalla letteratura, sono stati generati mutanti virali meleti per questi geni e vettori plasmidici per la loro espressione in cellule di mammifero. Lo stato di fosforilazione di tau è stato analizzato tramite immunofluorescenza e western blot. Anticorpi diretti contro 2 degli 85 possibili siti di fosforilazione non hanno rilevato significativi eventi di iperfosforilazione, rendendo impossibile stabilire un possibile ruolo diretto di questi due geni virali in questo processo. D’altra parte, usando l’anticorpo Tau-1, diretto contro tau nucleare, abbiamo rilevato una forte differenza tra cellule infettate e non infettate. Questo anticorpo rileva una forma nucleolare altamente insolubile di tau che aumenta e si ridistribuisce in tutto il nucleo dopo l’infezione virale. Ulteriori analisi ci hanno suggerito che queste alterazioni potessero essere collegate a modificazioni nella cromatina che favoriscono la riattivazione virale. L’aumento di questa particolare forma insolubile di tau può contribuire alla formazione dei NFT. Anche alterazioni nella omeostasi del Ca2+ intracellulare sono state collegate con la patogenesi di AD. Infatti, è noto che il Ca2+ intracellulare, oltre a giocare un ruolo essenzial nelle funzioni neuronali, è un elemento chiave per la sopravvivenza e la morte neuronale. Molti studi hanno riportato che il legame di HSV-1 alla membrana neuronale induce una depolarizzazione di membrana che porta ad una aumentata eccitabilità neuronale e innesca potenziali d’azione. Dal momento che, il legame di virioni erpetici alla membrana cellulare è principalmente mediato dalla glicoproteina B (gB) dell’envelope, abbiamo studiato il ruolo di questa proteina nel rilascio del calcio. L’attacco di gB alla superficie cellulare è mediato da un primo legame con l’eparan solfato dei proteoglicani (HSPG), una molecola di membrana ubiquitaria, seguito dal riconoscimento di un recettore che può essere diverso in relazione al tipo di cellula. In maniera simile, è stato riportato che Aβ può legare gli HSPG e che le due proteine mostrano un certo grado di omologia. Per valutare se gB e/o il legame agli HSPGsiano involti nei cambiamenti dei livelli intracellulari di Ca2+,abbiamo utilizzato diversi modelli cellulari e due sonde Ca2+ -sensibili. Le analisi con l’aequorina hanno rilevato che una forma solubile dig B può indurre il rilascio di Ca2+ dalle scorte intracellulari, mentre il Fura-2 ha mostrato che un HSV-1 deleto nella porzione di gB che lega gli HSPG, provoca un influsso di Ca2+ maggiore rispetto al virus non mutato. Questi dati dimostrano che gB è coinvolta nell’influsso di Ca2+ e che questo è regolato negativamente dal legame della proteina agli HSPG. Si può ipotizzare che in condizioni patologiche HSV-1 causi cambiamenti funzionali Ca2+ dipendenti, in neuroni corticali, che promuovono il processamento di APP e la produzione di Aβ, e un eccesso di Aβ può competere con la gB per legarsi agli HSPG, risultando in un movimento di Ca2+ maggiore rispetto ad una normale infezione. La seconda parte di questo lavoro è incentrata su studi in vivo, che usano un modello murino transgenico, per avere una comprensione più ampia della correlazione tra HSV-1 e AD. Questo sistema in vivo utilizza un HSV-1 che esprime la CRE ricombinasi e il ceppo murino reporter Ai6. La CRE ricombinasi media la marcatura permanente delle cellule infettate, tramite l’espressione del gene reporter. Fette istologiche dei gangli del trigemino (TG) e del cervello di topi adulti infettati o non infettati sono stati analizzati tramite immunofluorescenza fino a 126 giorni dall’infezione. Numerosi studi hanno rivelato che l’infezione o la riattivazione di HSV è stata associata con la neuroinfiammazione e la comparsa di diversi marcatori di neurodegenerazione collegati ad AD, incluso Aβ e tau iperfosforilata. Quindi, le caratteristiche patologiche analizzate in questo sistema sono state la presenza di neuroinfiammazione, SP e NFT. I risultati ottenuti nei nostri studi hanno mostrato, nelle aree colpite dal virus, una forte attivazione di macrofagi e microglia, cellule del sistema immunitario innato che regolano l’infiammazione nel sistema nervoso. D’altra parte né la formazione di SP né di NFT è stata rilevata, suggerendo che la loro comparsa possa richiedere più tempo, svariati eventi di riattivazione e/o altri elementi predisponenti. I dati presentati in questo lavoro supportano l’ipotesi che HSV-1 interferisca con diversi processi cellulari e sistemici che in condizioni fisiologiche possono essere ristabiliti dopo la fase acuta d’infezione/riattivazione. Comunque queste osservazioni suggeriscono che le alterazioni indotte dal virus combinate con l’età e altri fattori di rischio, possa peggiorare una situazione già patologic, supportando l’idea che HSV-1 è un agente rilevante, benché non essenziale, nello sviluppo di AD a diversi livelli.

Herpes simple virus type 1 and neurodegenerative disorders: can viral infection increase the risk of developing Alzheimer's disease

CECCHI, Damiano
2016

Abstract

Herpes simplex virus type 1 (HSV-1) is a human neurotropic virus whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. After initial infection and lytic multiplication at the body periphery the virus enters the sensory neurons that innervate the infected epithelia and, following retrograde transport, establishes a lifelong latent infection in sensory ganglia. Increasing evidences indicate that periodic sub-clinical reactivations in the CNS and peripheral nervous system may occur, with subsequent immune response and neurodegeneration, suggesting that HSV-1 is a risk factor in the pathogenesis of Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by progressive decline in cognitive functions leading to memory loss and dementia. The main pathological hallmarks of the disease are: chronic inflammation, calcium dyshomeostasis and the presence of the aberrant highly insoluble protein aggregates neurofibrillary tangles (NFT) and senile plaques (SP), respectively composed by the hyperphosphorylated protein tau (P-tau) and the amyloid-β peptide (Aβ). This work is focused on different aspects of the possible involvement of HSV in the pathogenesis of AD. In the first part, the molecular mechanisms that might induce pathological alterations, with a particular emphasis on protein tau and signalling, were investigated, in vitro, in several cell lines such as epithelial, neuroblastoma and primary neuronal cells derived from newborn 3xTG AD mouse model. Several studies have investigated the link between HSV-1 and phosphorylation of tau protein. To evaluate if the two viral kinases US3 and UL13 are involved in tau hyperphosphorylation, as suggested by the literature, mutant viruses lacking these genes and plasmid vectors for their expression in mammalian cells were generated. The phosphorylation status of tau was evaluated by immunofluorescence and immunoblot analysis. Antibodies directed against 2 out of the 85 possible phosphorylation sites failed to detect significant events of hyperphosphorylation, making impossible to establish a possible direct role of these two viral genes in this process. However, using the antibody Tau-1, directed against nuclear Tau, we have revealed strong differences between infected and uninfected cells. This antibody detects a nucleolar highly insoluble form of tau that is increased and redistributed throughout the whole nucleus after viral infection. Further analysis suggested us that these alterations could be related to a modification on chromatin status that favours viral reactivation. The increase of this particular insoluble form of tau can contribute to the formation of NFT. Alterations of intracellular Ca2+ homeostasis and signalling have also been implicated in AD pathogenesis. In fact, it is well known that intracellular Ca2+, besides playing an essential role in neuronal functions, is a key element of neuronal survival and death. Several studies have reported that HSV-1 binding to neuronal membrane induced membrane depolarization leading to increased neuronal excitability and triggering action potentials. Since, the binding of HSV virions to the cell membrane is mainly mediated by the viral envelope glycoprotein B (gB) we have studied the role of this protein in Ca2+ release. The attachment of gB to the cell surface is mediated by a first binding to heparan sulfate proteoglycan (HSPG), an ubiquitous cell membrane molecule, followed by the recognition of a receptor that can be different depending on the cell type. Similarly, it has been reported that Aβ can bind HSPG and the two proteins show a certain grade of homology. To evaluate if gB and/or HSPG binding site are involved in changes of the intracellular levels of Ca2+ we have utilized different cellular models and two Ca2+-sensitive probes. Analysis with Aequorin revealed that a soluble recombinant form of gB can induce Ca2+ release from intracellular stores, while FURA-2 showed that an HSV-1 mutant expressing a gB deleted for the HSPG binding site increases intracellular Ca2+ uptake, compared to wild type virus. These data demonstrate that gB is involved in the intracellular Ca2+ influx and that this is negatively regulated by the binding of the protein to HSPG. We can speculate that in pathological conditions HSV-1 causes functional changes Ca2+ dependent, in cortical neurons, that promote APP processing and Aβ production and excess of Aβ can compete with gB to bind to HSPG, thus resulting in a movement of Ca2+ higher than in normal infection. The second part of this work is focus on in vivo studies, using a reporter transgenic mouse model system, in order to have a wider comprehension of the correlation between HSV-1 and AD. This in vivo system utilizes a recombinant virus expressing CRE recombinase and the CRE reporter mouse strain Ai6. CRE recombinase mediates the permanent marking of infected cells, by the expression of the reporter gene. Trigeminal ganglia (TG) and brain slices of infected or uninfected adult Ai6 mice were analyzed by immunofluorescence assay until 126 days post-infection. Number of studies have revealed that HSV infection or reactivation was associated to neuroinflammation and to the appearance of AD several markers of neurodegeneration including Aβ and Tau hyperphosphorylation. Therefore, the pathological hallmarks analyzed in this system were the presence of neuroinflammation, SP and NFT. The results obtained in our studies have showed, in the areas affected by the virus infection, a strong activation of macrophages and microglia, cells of the innate immunity that orchestrate inflammation in the nervous system. On the other hand nor SP nor NFT formations were detected, suggesting that their outcome may require more time, different events of reactivation and/or other predisposing elements. The data presented in this work support the hypothesis that HSV-1 interferes with several cellular and systemic processes that in physiological conditions may be restored after acute phase of viral infection/reactivation. However these findings suggest that the alterations induced by the virus combined with ageing and other risk factors, can worsen a yet pathological situation, supporting the idea that HSV-1 is a relevant, although not essential, agent for the development of AD at different levels.
GRANDI, Paola
MANSERVIGI, Roberto
BERNARDI, Francesco
File in questo prodotto:
File Dimensione Formato  
Tesi Damiano Cecchi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 3.66 MB
Formato Adobe PDF
3.66 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2403251
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact