We consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev–Slobodeckiĭ norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always coincide and give some sufficient conditions on the open sets for this to happen. We also highlight some unnatural behaviors of the interpolation space. The treatment is as self-contained as possible.
A note on homogeneous Sobolev spaces of fractional order
Brasco L.
Primo
;
2019
Abstract
We consider a homogeneous fractional Sobolev space obtained by completion of the space of smooth test functions, with respect to a Sobolev–Slobodeckiĭ norm. We compare it to the fractional Sobolev space obtained by the K-method in real interpolation theory. We show that the two spaces do not always coincide and give some sufficient conditions on the open sets for this to happen. We also highlight some unnatural behaviors of the interpolation space. The treatment is as self-contained as possible.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
brasal_final_rev.pdf
accesso aperto
Descrizione: post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
Brasco-Salort2019_Article_ANoteOnHomogeneousSobolevSpace.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
828.46 kB
Formato
Adobe PDF
|
828.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1806.08945.pdf
accesso aperto
Descrizione: pre print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.