The fault diagnosis and prognosis of wind turbine systems represent a challenging issue, thus justifying the research topics developed in this work with application to safety-critical systems. Therefore, this chapter addresses these research issues and demonstrates viable techniques of fault diagnosis and condition monitoring. To this aim, the design of the so-called fault detector relies on its estimate, which involves data-driven methods, as they result effective methods for managing partial information of the system dynamics, together with errors, model-reality mismatch and disturbance effects. In particular, the considered data-driven strategies use fuzzy systems and neural networks, which are employed to establish non-linear dynamic links between measurements and faults. The selected prototypes are based on non-linear autoregressive with exogenous input descriptions, since they are able to approximate non-linear dynamic functions with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis schemes are verified via a high-fidelity simulator, which describes the normal and the faulty behaviour of a wind turbine plant. Finally, the robustness and the reliability features of the proposed methods are validated in the presence of uncertainty and disturbance implemented in the wind turbine simulator.

Fault diagnosis techniques for a Wind Turbine System

Simani S.
Primo
Writing – Review & Editing
;
2019

Abstract

The fault diagnosis and prognosis of wind turbine systems represent a challenging issue, thus justifying the research topics developed in this work with application to safety-critical systems. Therefore, this chapter addresses these research issues and demonstrates viable techniques of fault diagnosis and condition monitoring. To this aim, the design of the so-called fault detector relies on its estimate, which involves data-driven methods, as they result effective methods for managing partial information of the system dynamics, together with errors, model-reality mismatch and disturbance effects. In particular, the considered data-driven strategies use fuzzy systems and neural networks, which are employed to establish non-linear dynamic links between measurements and faults. The selected prototypes are based on non-linear autoregressive with exogenous input descriptions, since they are able to approximate non-linear dynamic functions with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis schemes are verified via a high-fidelity simulator, which describes the normal and the faulty behaviour of a wind turbine plant. Finally, the robustness and the reliability features of the proposed methods are validated in the presence of uncertainty and disturbance implemented in the wind turbine simulator.
2019
9781789842142
Fault diagnosis, analytical redundancy, fuzzy prototypes, neural networks, diagnostic residuals, fault reconstruction, wind turbine simulator
File in questo prodotto:
File Dimensione Formato  
65244.pdf

accesso aperto

Descrizione: Editorial version
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
publication date.pdf

solo gestori archivio

Descrizione: pagina web del contributo dalla quale si evincono le date di sottomissione, revisione. La data di pubblicazione first on line è 2019
Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 311.37 kB
Formato Adobe PDF
311.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2399736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact