Carbon and nitrogen elemental (C-N, wt%) and isotopic (δ13C-δ15N, ‰) investigation has been carried out on alluvial and deltaic soils from the Padanian plain (northern Italy), an area interested by intensive agricultural activities, to refine previous inferences on depositional facies, pedogenetic processes and anthropogenic influences. Soil analysis, carried out by EA-IRMS, have been focused on inorganic and organic fractions properly speciated by a thermally-based method, whereas further insights on the organic matter constituents have been obtained by sequential fractionation. The bulk EA-IRMS analyses reveal a remarkable compositional heterogeneity of the investigated soils (TC 0.89 to 11.93 wt%, TN 0.01 to 0.78 wt%, δ13CTC -1.2 to -28.2‰, δ15N -1.2 to 10.0‰) that has to be explained as an integration between inorganic and organic pools. The latter have been subdivided in Non-Extractable Organic Matter (NEOM, δ13C -16.3 to -28.6‰) and in extractable fractions as Fulvic (FA, δ13C -24.7 to -27.5‰, δ15N 0.6 to 5.7‰) and Humic (HA, δ13C -24.6 to -27.0‰, δ15N 1.0 to 9.7‰) Acids, which have been used to infer soil dynamics and Soil Organic Matter (SOM) stability processes. Results indicate that SOM at depth of 100 cm was generally affected by microbial reworking, with the exception of clayey and peaty deposits in which biological activity seems inhibited. Peaty and clayey soils display an organic fraction loss of ca. 20% toward the surface, suggesting deterioration possibly induced by intensive agricultural activities. These latter may be the cause of the ubiquitous losses of organic fraction throughout the investigated area over the last seventy years, evaluated by the comparison with historical data on corresponding topsoils. The obtained insights are very important because these soils are carbon (and nitrogen) sinks that are vulnerable and can be degraded, loosing agricultural productivity and potentially contributing to greenhouse gases fluxes.

Carbon and nitrogen pools in Padanian soils (Italy): Origin and dynamics of soil organic matter

Gianluca Bianchini
Membro del Collaboration Group
;
UmbertoTessari
2018

Abstract

Carbon and nitrogen elemental (C-N, wt%) and isotopic (δ13C-δ15N, ‰) investigation has been carried out on alluvial and deltaic soils from the Padanian plain (northern Italy), an area interested by intensive agricultural activities, to refine previous inferences on depositional facies, pedogenetic processes and anthropogenic influences. Soil analysis, carried out by EA-IRMS, have been focused on inorganic and organic fractions properly speciated by a thermally-based method, whereas further insights on the organic matter constituents have been obtained by sequential fractionation. The bulk EA-IRMS analyses reveal a remarkable compositional heterogeneity of the investigated soils (TC 0.89 to 11.93 wt%, TN 0.01 to 0.78 wt%, δ13CTC -1.2 to -28.2‰, δ15N -1.2 to 10.0‰) that has to be explained as an integration between inorganic and organic pools. The latter have been subdivided in Non-Extractable Organic Matter (NEOM, δ13C -16.3 to -28.6‰) and in extractable fractions as Fulvic (FA, δ13C -24.7 to -27.5‰, δ15N 0.6 to 5.7‰) and Humic (HA, δ13C -24.6 to -27.0‰, δ15N 1.0 to 9.7‰) Acids, which have been used to infer soil dynamics and Soil Organic Matter (SOM) stability processes. Results indicate that SOM at depth of 100 cm was generally affected by microbial reworking, with the exception of clayey and peaty deposits in which biological activity seems inhibited. Peaty and clayey soils display an organic fraction loss of ca. 20% toward the surface, suggesting deterioration possibly induced by intensive agricultural activities. These latter may be the cause of the ubiquitous losses of organic fraction throughout the investigated area over the last seventy years, evaluated by the comparison with historical data on corresponding topsoils. The obtained insights are very important because these soils are carbon (and nitrogen) sinks that are vulnerable and can be degraded, loosing agricultural productivity and potentially contributing to greenhouse gases fluxes.
2018
Natali, Claudio; Bianchini, Gianluca; Vittori Antisari, Livia; Natale, Marco; Tessari, Umberto
File in questo prodotto:
File Dimensione Formato  
carbon and nitrogens pools in Padanian soils_2018CHEMIE DER ERDE.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11392 2397749 Carbon and nitrogen pools.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2397749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact