Allen’s Interval Algebra (IA) is one of the most prominent formalisms in the area of qualitative temporal reasoning; however, its applications are naturally restricted to linear flows of time. When dealing with nonlinear time, Allen’s algebra can be extended in several ways, and, as suggested by Ragni and Wölfl, a possible solution consists in defining the Branching Algebra (BA) as a set of 19 basic relations (13 basic linear relations plus 6 new basic nonlinear ones) in such a way that each basic relation between two intervals is completely defined by the relative position of the endpoints on a tree-like partial order. While the problem of deciding the consistency of a network of IA-constraints is well-studied, and every subset of the IA has been classified with respect to the tractability of its consistency problem, the fragments of the BA have received less attention. In this paper, we first define the notion of convex BA-relation, and, then, we prove that the consistency of a network of convex BA-relations can be decided via path consistency, and is therefore a polynomial problem. This is the first non-trivial tractable fragment of the BA; given the clear parallel with the linear case, our contribution poses the bases for a deeper study of fragments of BA towards their complete classification.

Deciding the consistency of branching time interval networks

Gavanelli, Marco
Primo
;
PASSANTINO, ALESSANDRO;Sciavicco, Guido
Ultimo
2018

Abstract

Allen’s Interval Algebra (IA) is one of the most prominent formalisms in the area of qualitative temporal reasoning; however, its applications are naturally restricted to linear flows of time. When dealing with nonlinear time, Allen’s algebra can be extended in several ways, and, as suggested by Ragni and Wölfl, a possible solution consists in defining the Branching Algebra (BA) as a set of 19 basic relations (13 basic linear relations plus 6 new basic nonlinear ones) in such a way that each basic relation between two intervals is completely defined by the relative position of the endpoints on a tree-like partial order. While the problem of deciding the consistency of a network of IA-constraints is well-studied, and every subset of the IA has been classified with respect to the tractability of its consistency problem, the fragments of the BA have received less attention. In this paper, we first define the notion of convex BA-relation, and, then, we prove that the consistency of a network of convex BA-relations can be decided via path consistency, and is therefore a polynomial problem. This is the first non-trivial tractable fragment of the BA; given the clear parallel with the linear case, our contribution poses the bases for a deeper study of fragments of BA towards their complete classification.
2018
9783959770897
Branching time; Consistency; Constraint programming;
File in questo prodotto:
File Dimensione Formato  
time2018ConvexBranchingCurrent.pdf

solo gestori archivio

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 477.5 kB
Formato Adobe PDF
477.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LIPIcs-TIME-2018-12.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 424 kB
Formato Adobe PDF
424 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2394156
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact