We prove higher Hölder regularity for solutions of equations involving the fractional $p-$Laplacian of order $s$, when $pge 2$ and $0<1$. In particular, we provide an explicit Hölder exponent for solutions of the non-homogeneous equation with data in $L^q$ and $q>N/(sp)$, which is almost sharp whenever $sple (p−1)+N/q$. The result is new already for the homogeneous equation.

Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case

Lorenzo Brasco;
2018

Abstract

We prove higher Hölder regularity for solutions of equations involving the fractional $p-$Laplacian of order $s$, when $pge 2$ and $0<1$. In particular, we provide an explicit Hölder exponent for solutions of the non-homogeneous equation with data in $L^q$ and $q>N/(sp)$, which is almost sharp whenever $sple (p−1)+N/q$. The result is new already for the homogeneous equation.
2018
Brasco, Lorenzo; Lindgren, Erik; Schikorra, Armin
File in questo prodotto:
File Dimensione Formato  
bralinsch_final_rev3.pdf

accesso aperto

Tipologia: Pre-print
Licenza: Creative commons
Dimensione 551.09 kB
Formato Adobe PDF
551.09 kB Adobe PDF Visualizza/Apri
1-s2.0-S0001870818303402-main.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 771.04 kB
Formato Adobe PDF
771.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2393465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 75
social impact