We prove higher Hölder regularity for solutions of equations involving the fractional $p-$Laplacian of order $s$, when $pge 2$ and $0<1$. In particular, we provide an explicit Hölder exponent for solutions of the non-homogeneous equation with data in $L^q$ and $q>N/(sp)$, which is almost sharp whenever $sple (p−1)+N/q$. The result is new already for the homogeneous equation.
Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case
Lorenzo Brasco;
2018
Abstract
We prove higher Hölder regularity for solutions of equations involving the fractional $p-$Laplacian of order $s$, when $pge 2$ and $0<1$. In particular, we provide an explicit Hölder exponent for solutions of the non-homogeneous equation with data in $L^q$ and $q>N/(sp)$, which is almost sharp whenever $sple (p−1)+N/q$. The result is new already for the homogeneous equation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bralinsch_final_rev3.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
551.09 kB
Formato
Adobe PDF
|
551.09 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0001870818303402-main.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
771.04 kB
Formato
Adobe PDF
|
771.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.