Proximal gamma-ray spectroscopy recently emerged as a promising technique for non-stop monitoring of soil water content with possible applications in the field of precision farming. The potentialities of the method are investigated by means of Monte Carlo simulations applied to the reconstruction of gamma-ray spectra collected by a NaI scintillation detector permanently installed at an agricultural experimental site. A two steps simulation strategy based on a geometrical translational invariance is developed. The strengths of this approach are the reduction of computational time with respect to a direct source-detector simulation, the reconstruction of 40K, 232Th and 238U fundamental spectra, the customization in relation to different experimental scenarios and the investigation of effects due to individual variables for sensitivity studies. The reliability of the simulation is effectively validated against an experimental measurement with known soil water content and radionuclides abundances. The relation between soil water content and gamma signal is theoretically derived and applied to a Monte Carlo synthetic calibration performed with the specific soil composition of the experimental site. Ready to use general formulae and simulated coefficients for the estimation of soil water content are also provided adopting standard soil compositions. Linear regressions between input and output soil water contents, inferred from simulated 40K and 208Tl gamma signals, provide excellent results demonstrating the capability of the proposed method in estimating soil water content with an average uncertainty <1%.

Investigating the potentialities of Monte Carlo simulation for assessing soil water content via proximal gamma-ray spectroscopy

Baldoncini, Marica
Membro del Collaboration Group
;
Albéri, Matteo
Membro del Collaboration Group
;
Bottardi, Carlo
Membro del Collaboration Group
;
Chiarelli, Enrico
Membro del Collaboration Group
;
Strati, Virginia
Membro del Collaboration Group
;
Mantovani, Fabio
Membro del Collaboration Group
2018

Abstract

Proximal gamma-ray spectroscopy recently emerged as a promising technique for non-stop monitoring of soil water content with possible applications in the field of precision farming. The potentialities of the method are investigated by means of Monte Carlo simulations applied to the reconstruction of gamma-ray spectra collected by a NaI scintillation detector permanently installed at an agricultural experimental site. A two steps simulation strategy based on a geometrical translational invariance is developed. The strengths of this approach are the reduction of computational time with respect to a direct source-detector simulation, the reconstruction of 40K, 232Th and 238U fundamental spectra, the customization in relation to different experimental scenarios and the investigation of effects due to individual variables for sensitivity studies. The reliability of the simulation is effectively validated against an experimental measurement with known soil water content and radionuclides abundances. The relation between soil water content and gamma signal is theoretically derived and applied to a Monte Carlo synthetic calibration performed with the specific soil composition of the experimental site. Ready to use general formulae and simulated coefficients for the estimation of soil water content are also provided adopting standard soil compositions. Linear regressions between input and output soil water contents, inferred from simulated 40K and 208Tl gamma signals, provide excellent results demonstrating the capability of the proposed method in estimating soil water content with an average uncertainty <1%.
2018
Baldoncini, Marica; Albéri, Matteo; Bottardi, Carlo; Chiarelli, Enrico; Raptis, Kassandra Giulia Cristina; Strati, Virginia; Mantovani, Fabio...espandi
File in questo prodotto:
File Dimensione Formato  
Baldoncini_18.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1809.03413.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2392447
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact