We studied the evolution of the magnetic state of a majority logic gate consisting of a cluster of five dipolarly-coupled nanomagnets, fabricated by e-beam lithography, under the application of a clocking field, using a combination of magneto-optical Kerr effect and magnetic force microscopy. The data were interpreted by advanced GPU-based micromagnetic simulations, where, in addition to the single ideal-shaped gate, a 3 x 3 array of "realistic gates", whose shape is directly derived from scanning electron microscopy images, is considered. A fairly good agreement between measurements and simulations has been achieved, showing that asynchronous switching of nominally identical gates may occur, because of unavoidable structural and morphological imperfections. Moreover, a slight misalignment of 1 degrees-2 degrees of the clocking field with respect to the hard axis of the dots may be detrimental for the correct logic operation of the gates. It follows that reliable, error-free and reproducible operations in future magnetologic devices would require tight control and precision of both the lithographic process and the direction of the clocking field. Moreover, a significant improvement could be insured by a stronger dipolar coupling between the dots, for instance increasing their thickness and/or using materials with larger magnetization. (C) 2018 Elsevier B.V. All rights reserved.

Robustness of majority gates based on nanomagnet logic

Gonelli, Marco
Primo
;
Fin, Samuele
Secondo
;
Bisero, Diego
Ultimo
2018

Abstract

We studied the evolution of the magnetic state of a majority logic gate consisting of a cluster of five dipolarly-coupled nanomagnets, fabricated by e-beam lithography, under the application of a clocking field, using a combination of magneto-optical Kerr effect and magnetic force microscopy. The data were interpreted by advanced GPU-based micromagnetic simulations, where, in addition to the single ideal-shaped gate, a 3 x 3 array of "realistic gates", whose shape is directly derived from scanning electron microscopy images, is considered. A fairly good agreement between measurements and simulations has been achieved, showing that asynchronous switching of nominally identical gates may occur, because of unavoidable structural and morphological imperfections. Moreover, a slight misalignment of 1 degrees-2 degrees of the clocking field with respect to the hard axis of the dots may be detrimental for the correct logic operation of the gates. It follows that reliable, error-free and reproducible operations in future magnetologic devices would require tight control and precision of both the lithographic process and the direction of the clocking field. Moreover, a significant improvement could be insured by a stronger dipolar coupling between the dots, for instance increasing their thickness and/or using materials with larger magnetization. (C) 2018 Elsevier B.V. All rights reserved.
2018
Gonelli, Marco; Fin, Samuele; Carlotti, Giovanni; Dey, Himadri; Csaba, György; Porod, Wolfgang; Bernstein, Gary H.; Bisero, Diego
File in questo prodotto:
File Dimensione Formato  
Gonelli et al JMMM 2018.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2391098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact