We investigate the use of a hybrid nanoresonator comprising a photonic crystal (PhC) cavity coupled to a plasmonic bowtie nanoantenna (BNA) for the optical trapping of nanoparticles in water. Using finite-difference time-domain simulations, we show that this structure can confine light to an extremely small volume of similar to 30, 000 nm(3) (similar to 30 zl) in the BNA gap whilst maintaining a high quality factor (5400-7700). The optical intensity inside the BNA gap is enhanced by a factor larger than 40 compared to when the BNA is not present above the PhC cavity. Such a device has potential applications in optical manipulation, creating high precision optical traps with an intensity gradient over a distance much smaller than the diffraction limit, potentially allowing objects to be confined to much smaller volumes and making it ideal for optical trapping of Rayleigh particles (particles much smaller than the wavelength of light).

Investigating the use of a hybrid plasmonic-photonic nanoresonator for optical trapping using finite-difference time-domain method

G. Bellanca
Secondo
Writing – Original Draft Preparation
;
A. Parini
Membro del Collaboration Group
;
2016

Abstract

We investigate the use of a hybrid nanoresonator comprising a photonic crystal (PhC) cavity coupled to a plasmonic bowtie nanoantenna (BNA) for the optical trapping of nanoparticles in water. Using finite-difference time-domain simulations, we show that this structure can confine light to an extremely small volume of similar to 30, 000 nm(3) (similar to 30 zl) in the BNA gap whilst maintaining a high quality factor (5400-7700). The optical intensity inside the BNA gap is enhanced by a factor larger than 40 compared to when the BNA is not present above the PhC cavity. Such a device has potential applications in optical manipulation, creating high precision optical traps with an intensity gradient over a distance much smaller than the diffraction limit, potentially allowing objects to be confined to much smaller volumes and making it ideal for optical trapping of Rayleigh particles (particles much smaller than the wavelength of light).
2016
978-88-907599-1-8
Nanophotonics; Nanoplasmonics; Optical trapping; Optical tweezers; Photonics; Plasmonics;
Photonics, plasmonics, optical tweezers, nanoresonators
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2386808
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact