Peptide Receptor Radionuclide Therapy (PRRT) has proven its efficacy in the treatment of neuroendocrine and other somatostatin receptor expressing tumours (SR-tumours). Several clinical trials have confirmed that adverse effects are represented by possible renal impairment, which is the major concern, and low but not absent hematological toxicity. High kidney irradiation is a constant, despite the sparing of dose obtained by renal protectors. Hematological toxicity, although low, needs to be monitored. The clinical and dosimetry results collected in more than a decade have recognized weak points to unravel, increased knowledge, offering new views. When planning therapy with radiopeptides, the large patients' variability as for biodistribution and tumour uptake must be taken into account in order to tailor the therapy, or at least to avoid foreseeable gross treatments. Reliable and personalized dosimetry is more and more requested. This paper reviews through the literature the methods to study the biokinetics, the dosimetry outcomes, some clue information and correlations obtained once applying the radiobiological models. Special focus is given on recent improvements and indications for critical organ protection that light up challenging perspectives for PRRT.
Dosimetry for treatment with radiolabelled somatostatin analogues. A review
Bartolomei, M.;Severi, S.;Paganelli, G.
2010
Abstract
Peptide Receptor Radionuclide Therapy (PRRT) has proven its efficacy in the treatment of neuroendocrine and other somatostatin receptor expressing tumours (SR-tumours). Several clinical trials have confirmed that adverse effects are represented by possible renal impairment, which is the major concern, and low but not absent hematological toxicity. High kidney irradiation is a constant, despite the sparing of dose obtained by renal protectors. Hematological toxicity, although low, needs to be monitored. The clinical and dosimetry results collected in more than a decade have recognized weak points to unravel, increased knowledge, offering new views. When planning therapy with radiopeptides, the large patients' variability as for biodistribution and tumour uptake must be taken into account in order to tailor the therapy, or at least to avoid foreseeable gross treatments. Reliable and personalized dosimetry is more and more requested. This paper reviews through the literature the methods to study the biokinetics, the dosimetry outcomes, some clue information and correlations obtained once applying the radiobiological models. Special focus is given on recent improvements and indications for critical organ protection that light up challenging perspectives for PRRT.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.