Performance analysis tools allow application developers to identify and characterize the inefficiencies that cause performance degradation in their codes. Due to the increasing interest in the High Performance Computing (HPC) community towards energy-efficiency issues, it is of paramount importance to be able to correlate performance and power figures within the same profiling and analysis tools. For this reason, we present a preliminary performance and energy-efficiency study aimed at demonstrating how a single tool can be used to collect most of the relevant metrics. Moreover we show how the same analysis techniques are applicable on different architectures, analyzing the same HPC application running on two clusters, based respectively on Intel Haswell and Arm Cortex-A57 CPUs.
Multi-Node Advanced Performance and Power Analysis with Paraver
Enrico CaloreSecondo
2018
Abstract
Performance analysis tools allow application developers to identify and characterize the inefficiencies that cause performance degradation in their codes. Due to the increasing interest in the High Performance Computing (HPC) community towards energy-efficiency issues, it is of paramount importance to be able to correlate performance and power figures within the same profiling and analysis tools. For this reason, we present a preliminary performance and energy-efficiency study aimed at demonstrating how a single tool can be used to collect most of the relevant metrics. Moreover we show how the same analysis techniques are applicable on different architectures, analyzing the same HPC application running on two clusters, based respectively on Intel Haswell and Arm Cortex-A57 CPUs.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.