The purpose of this note is to discuss several results that have been obtained in the last decade in the context of sharp adjoint Fourier restriction/Strichartz inequalities. Rather than aiming at full generality, we focus on several concrete examples of underlying manifolds with large groups of symmetries, which sometimes allow for simple geometric proofs. We mention several open problems along the way, and include an appendix on integration on manifolds using delta calculus.

Some recent progress on sharp Fourier restriction theory

D. Foschi;OLIVEIRA E SILVA, DIOGO
2017

Abstract

The purpose of this note is to discuss several results that have been obtained in the last decade in the context of sharp adjoint Fourier restriction/Strichartz inequalities. Rather than aiming at full generality, we focus on several concrete examples of underlying manifolds with large groups of symmetries, which sometimes allow for simple geometric proofs. We mention several open problems along the way, and include an appendix on integration on manifolds using delta calculus.
2017
Foschi, D.; OLIVEIRA E SILVA, Diogo
File in questo prodotto:
File Dimensione Formato  
1701.06895.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 470.56 kB
Formato Adobe PDF
470.56 kB Adobe PDF Visualizza/Apri
2017_Article_.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 373.36 kB
Formato Adobe PDF
373.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2383953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact