The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC–UV/DAD and HPLC–ESI–MSn by using an Ascentis Express C18 column (150 mm × 3.0 mm I.D., 2.7 μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1 h (15 min static and 45 min dynamic for 1 cycle) with the oven temperature set at 40–45 °C and 90 bar of pressure, an overall extraction yield of 1.18–1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC50 values ranging from 21.01 ± 2.89 to 31.11 ± 2.l4 μg/mL; cell viability was affected mainly between 24 and 48 h of exposure. The results show the possibility of a new “green” approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention.

A new method based on supercritical fluid extraction for polyacetylenes and polyenes from Echinacea pallida (Nutt.) Nutt. roots

Tacchini, Massimo
Primo
Investigation
;
Spagnoletti, Antonella
Secondo
Investigation
;
Sacchetti, Gianni
Penultimo
Supervision
;
2017

Abstract

The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC–UV/DAD and HPLC–ESI–MSn by using an Ascentis Express C18 column (150 mm × 3.0 mm I.D., 2.7 μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1 h (15 min static and 45 min dynamic for 1 cycle) with the oven temperature set at 40–45 °C and 90 bar of pressure, an overall extraction yield of 1.18–1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC50 values ranging from 21.01 ± 2.89 to 31.11 ± 2.l4 μg/mL; cell viability was affected mainly between 24 and 48 h of exposure. The results show the possibility of a new “green” approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention.
2017
Tacchini, Massimo; Spagnoletti, Antonella; Brighenti, Virginia; Prencipe, Francesco Pio; Benvenuti, Stefania; Sacchetti, Gianni; Pellati, Federica...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2382687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact