We present a theoretical and experimental study of the modulation instability process in a dispersion oscillating passive fiber-ring resonator in the low dispersion region. Generally, the modulation of the dispersion along the cavity length is responsible for the emergence of a regime characterised by multiple parametric resonances (or Faraday instabilities). We show that, under weak dispersion conditions, a huge number of Faraday sidebands can grow under the influence of fourth order dispersion. We specifically designed a piecewise uniform fiber-ring cavity and report on experiments that confirm our theoretical predictions. We recorded the dynamics of this system revealing strong interactions between the different sidebands in agreement with numerical simulations.
Modulation instability in the weak dispersion regime of a dispersion modulated passive fiber-ring cavity
Trillo, StefanoPenultimo
;
2017
Abstract
We present a theoretical and experimental study of the modulation instability process in a dispersion oscillating passive fiber-ring resonator in the low dispersion region. Generally, the modulation of the dispersion along the cavity length is responsible for the emergence of a regime characterised by multiple parametric resonances (or Faraday instabilities). We show that, under weak dispersion conditions, a huge number of Faraday sidebands can grow under the influence of fourth order dispersion. We specifically designed a piecewise uniform fiber-ring cavity and report on experiments that confirm our theoretical predictions. We recorded the dynamics of this system revealing strong interactions between the different sidebands in agreement with numerical simulations.File | Dimensione | Formato | |
---|---|---|---|
Copie_oe-25-10-11283.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
4.77 MB
Formato
Adobe PDF
|
4.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.