The involvement of microRNAs in the control of repressors of human g-globin gene transcription has been firmly demonstrated, as described for the miR-486-3p mediated down-regulation of BCL11A. On the other hand, we have reported that miR-210 is involved in erythroid differentiation and, possibly, in γ-globin gene up-regulation. In the present study, we have identified the coding sequence of BCL11A as a possible target of miR-210. The following results sustain this hypothesis: (a) interactions between miR-210 and the miR-210 BCL11A site were demonstrated by SPR-based biomolecular interaction analysis (BIA); (b) the miR-210 site of BCL11A is conserved through molecular evolution; (c) forced expression of miR-210 leads to decrease of BCL11A-XL and increase of γ-globin mRNA content in erythroid cells, including erythroid precursors isolated from β-thalassemia patients. Our study suggests that the coding mRNA sequence of BCL11A can be targeted by miR-210. In addition to the theoretical point of view, these data are of interest from the applied point of view, supporting a novel strategy to inhibit BCL11A by mimicking miR-210 functions, accordingly with the concept supported by several papers and patent applications that inhibition of BCL11A is an efficient strategy for fetal hemoglobin induction in the treatment of β-thalassemia.

BCL11A mRNA targeting by miR-210: A possible network regulating γ-globin gene expression

Gasparello, Jessica
Primo
;
Fabbri, Enrica
Secondo
;
Bianchi, Nicoletta;Breveglieri, Giulia;Zuccato, Cristina;Borgatti, Monica;Gambari, Roberto
Penultimo
;
Finotti, Alessia
Ultimo
2017

Abstract

The involvement of microRNAs in the control of repressors of human g-globin gene transcription has been firmly demonstrated, as described for the miR-486-3p mediated down-regulation of BCL11A. On the other hand, we have reported that miR-210 is involved in erythroid differentiation and, possibly, in γ-globin gene up-regulation. In the present study, we have identified the coding sequence of BCL11A as a possible target of miR-210. The following results sustain this hypothesis: (a) interactions between miR-210 and the miR-210 BCL11A site were demonstrated by SPR-based biomolecular interaction analysis (BIA); (b) the miR-210 site of BCL11A is conserved through molecular evolution; (c) forced expression of miR-210 leads to decrease of BCL11A-XL and increase of γ-globin mRNA content in erythroid cells, including erythroid precursors isolated from β-thalassemia patients. Our study suggests that the coding mRNA sequence of BCL11A can be targeted by miR-210. In addition to the theoretical point of view, these data are of interest from the applied point of view, supporting a novel strategy to inhibit BCL11A by mimicking miR-210 functions, accordingly with the concept supported by several papers and patent applications that inhibition of BCL11A is an efficient strategy for fetal hemoglobin induction in the treatment of β-thalassemia.
2017
Gasparello, Jessica; Fabbri, Enrica; Bianchi, Nicoletta; Breveglieri, Giulia; Zuccato, Cristina; Borgatti, Monica; Gambari, Roberto; Finotti, Alessia
File in questo prodotto:
File Dimensione Formato  
Gasparello et al IJMS 2017.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 3.79 MB
Formato Adobe PDF
3.79 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2381896
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact