As bivalve aquaculture expands globally, an understanding of how it alters nitrogen is important to minimize impacts. This study investigated nitrogen cycling associated with clam aquaculture in the Sacca di Goro, Italy (Ruditapes philipinarum) and the Eastern Shore, USA (Mercenaria mercenaria). Ammonium and dissolved oxygen fluxes were positively correlated with clam biomass; R. philippinarum consumed ~ 6 times more oxygen and excreted ~ 5 times more NH4+ than M. mercenaria. There was no direct effect of clams on denitrification or dissimilatory nitrate reduction to ammonium (DNRA); rather, nitrate availability controlled the competition between these microbial pathways. Highest denitrification rates were measured at sites where both water column nitrate and nitrification were elevated due to high densities of a burrowing amphipod (Corophium sp.). DNRA exceeded denitrification where water column nitrate was low and nitrification was suppressed in highly reduced sediment, potentially due to low hydrologic flow and high clam densities.

Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites

Castaldelli, Giuseppe
Penultimo
;
2018

Abstract

As bivalve aquaculture expands globally, an understanding of how it alters nitrogen is important to minimize impacts. This study investigated nitrogen cycling associated with clam aquaculture in the Sacca di Goro, Italy (Ruditapes philipinarum) and the Eastern Shore, USA (Mercenaria mercenaria). Ammonium and dissolved oxygen fluxes were positively correlated with clam biomass; R. philippinarum consumed ~ 6 times more oxygen and excreted ~ 5 times more NH4+ than M. mercenaria. There was no direct effect of clams on denitrification or dissimilatory nitrate reduction to ammonium (DNRA); rather, nitrate availability controlled the competition between these microbial pathways. Highest denitrification rates were measured at sites where both water column nitrate and nitrification were elevated due to high densities of a burrowing amphipod (Corophium sp.). DNRA exceeded denitrification where water column nitrate was low and nitrification was suppressed in highly reduced sediment, potentially due to low hydrologic flow and high clam densities.
Murphy, Anna E.; Nizzoli, Daniele; Bartoli, Marco; Smyth, Ashley R.; Castaldelli, Giuseppe; Anderson, Iris C.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0025326X17310305-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Postprint113922381789.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11392/2381789
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact