The concept of smart morphing blades, which can control themselves to reduce or eliminate the need for active control systems, is a highly attractive solution in blade technology. In this paper an innovative passive control system based on Shape Memory Alloys (SMAs) is proposed. On the basis of previous thermal and shape characterization of a single morphing blade for a heavy-duty automotive cooling axial fan, this study deals with the numerical analysis of the aerodynamic loads acting on the fan. By coupling CFD and FEM approaches it is possible to analyze the actual blade shape resulting from both the aerodynamic and centrifugal loads. The numerical results indicate that the polymeric blade structure ensures proper resistance and enables shape variation due to the action of the SMA strips.

Analysis of the aerodynamic and structural performance of a cooling fan with morphing blade

Suman, A.;Fortini, A.;Aldi, N.;Pinelli, M.;Merlin, M.
2017

Abstract

The concept of smart morphing blades, which can control themselves to reduce or eliminate the need for active control systems, is a highly attractive solution in blade technology. In this paper an innovative passive control system based on Shape Memory Alloys (SMAs) is proposed. On the basis of previous thermal and shape characterization of a single morphing blade for a heavy-duty automotive cooling axial fan, this study deals with the numerical analysis of the aerodynamic loads acting on the fan. By coupling CFD and FEM approaches it is possible to analyze the actual blade shape resulting from both the aerodynamic and centrifugal loads. The numerical results indicate that the polymeric blade structure ensures proper resistance and enables shape variation due to the action of the SMA strips.
Adaptive geometry; Computational fluid dynamics; Fluid-structure coupling; Morphing blade; Mechanics of Materials; Mechanical Engineering; Condensed Matter Physics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2381668
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact