This paper investigates the potential of unsteady flow modelling for the simulation of remote real-time control (RTC) of pressure in water distribution networks. The developed model combines the unsteady flow simulation solver with specific modules for generation of pulsed nodal demands and dynamic adjustment of pressure control valves in the network. The application to the skeletonized model of a real network highlights the improved capability of the unsteady flow simulation of RTC compared with the typical extended period simulation (EPS) models. The results show that the unsteady flow model provides sounder description of the amplitude of the pressure head variations at the controlled node. Furthermore, it enables identification of the suitable control time step to be adopted for obtaining a prompt and effective regulation. Nevertheless, EPS-based models allow consistent estimates of leakage reduction as well as proper indications for valve setting under network pressure RTC at a much smaller computational cost.
Unsteady flow modeling of pressure real-time control in water distribution networks
Creaco, Enrico
Primo
;Franchini, Marco;
2017
Abstract
This paper investigates the potential of unsteady flow modelling for the simulation of remote real-time control (RTC) of pressure in water distribution networks. The developed model combines the unsteady flow simulation solver with specific modules for generation of pulsed nodal demands and dynamic adjustment of pressure control valves in the network. The application to the skeletonized model of a real network highlights the improved capability of the unsteady flow simulation of RTC compared with the typical extended period simulation (EPS) models. The results show that the unsteady flow model provides sounder description of the amplitude of the pressure head variations at the controlled node. Furthermore, it enables identification of the suitable control time step to be adopted for obtaining a prompt and effective regulation. Nevertheless, EPS-based models allow consistent estimates of leakage reduction as well as proper indications for valve setting under network pressure RTC at a much smaller computational cost.File | Dimensione | Formato | |
---|---|---|---|
Creaco, Campisano, Franchini, Modica.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Unsteady Flow Modeling.pdf
accesso aperto
Descrizione: Post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.