Purpose: Thickening polymers have been used as excipients in nasal formulations to avoid nasal run-off (nasal drip) post-administration. However, increasing the viscosity of the formulation can have a negative impact on the quality of the aerosols generated. Therefore, the study aims to investigate the use of a novel smart nano-cellulose excipient to generate suitable droplets for nasal drug delivery that simultaneously has only marginally increased viscosity while still reducing nasal drips. Methods: Nasal sprays containing nano-cellulose at different concentrations were investigated for the additive’s potential as an excipient. The formulations were characterized for their rheological and aerosol properties. This was then compared to conventional nasal spray formulation containing the single-component hydroxyl-propyl methyl cellulose (HPMC) viscosity enhancing excipient. Results: The HPMC-containing nasal formulations behave in a Newtonian manner while the nano-cellulose formulations have a yield stress and shear-thinning properties. At higher excipient concentrations and shear rates, the nano-cellulose solutions have significantly lower viscosities compared to the HPMC solution, resulting in improved droplet formation when actuated through conventional nasal spray. Conclusions: Nano-cellulose materials could potentially be used as a suitable excipient for nasal drug delivery, producing consistent aerosol droplet size, and enhanced residence time within the nasal cavity with reduced run-offs compared to conventional polymer thickeners.

Novel nano-cellulose excipient for generating non-Newtonian droplets for targeted nasal drug delivery

GRANIERI, Angelo;SCALIA, Santo;
2017

Abstract

Purpose: Thickening polymers have been used as excipients in nasal formulations to avoid nasal run-off (nasal drip) post-administration. However, increasing the viscosity of the formulation can have a negative impact on the quality of the aerosols generated. Therefore, the study aims to investigate the use of a novel smart nano-cellulose excipient to generate suitable droplets for nasal drug delivery that simultaneously has only marginally increased viscosity while still reducing nasal drips. Methods: Nasal sprays containing nano-cellulose at different concentrations were investigated for the additive’s potential as an excipient. The formulations were characterized for their rheological and aerosol properties. This was then compared to conventional nasal spray formulation containing the single-component hydroxyl-propyl methyl cellulose (HPMC) viscosity enhancing excipient. Results: The HPMC-containing nasal formulations behave in a Newtonian manner while the nano-cellulose formulations have a yield stress and shear-thinning properties. At higher excipient concentrations and shear rates, the nano-cellulose solutions have significantly lower viscosities compared to the HPMC solution, resulting in improved droplet formation when actuated through conventional nasal spray. Conclusions: Nano-cellulose materials could potentially be used as a suitable excipient for nasal drug delivery, producing consistent aerosol droplet size, and enhanced residence time within the nasal cavity with reduced run-offs compared to conventional polymer thickeners.
Young, Paul M.; Traini, Daniela; Ong, Hui Xin; Granieri, Angelo; Zhu, Bing; Scalia, Santo; Song, Jie; Spicer, Patrick T.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2381137
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact