Lactic fermentation and respiration are important metabolic pathways on which life is based. Here, the rate of entropy in a cell associated to fermentation and respiration processes in glucose catabolism of living systems is calculated. This is done for both internal and external heat and matter transport according to a thermodynamic approach based on Prigogine's formalism. It is shown that the rate of entropy associated to irreversible reactions in fermentation processes is higher than the corresponding one in respiration processes. Instead, this behaviour is reversed for diffusion of chemical species and for heat exchanges. The ratio between the rates of entropy associated to the two metabolic pathways has a space and time dependence for diffusion of chemical species and is invariant for heat and irreversible reactions. In both fermentation and respiration processes studied separately, the total entropy rate tends towards a minimum value fulfilling Prigogine's minimum dissipation principle and is in accordance with the second principle of thermodynamics. The applications of these results could be important for cancer detection and therapy.

Is an entropy-based approach suitable for an understanding of the metabolic pathways of fermentation and respiration?

R. Zivieri
Primo
Writing – Original Draft Preparation
;
2017

Abstract

Lactic fermentation and respiration are important metabolic pathways on which life is based. Here, the rate of entropy in a cell associated to fermentation and respiration processes in glucose catabolism of living systems is calculated. This is done for both internal and external heat and matter transport according to a thermodynamic approach based on Prigogine's formalism. It is shown that the rate of entropy associated to irreversible reactions in fermentation processes is higher than the corresponding one in respiration processes. Instead, this behaviour is reversed for diffusion of chemical species and for heat exchanges. The ratio between the rates of entropy associated to the two metabolic pathways has a space and time dependence for diffusion of chemical species and is invariant for heat and irreversible reactions. In both fermentation and respiration processes studied separately, the total entropy rate tends towards a minimum value fulfilling Prigogine's minimum dissipation principle and is in accordance with the second principle of thermodynamics. The applications of these results could be important for cancer detection and therapy.
2017
Zivieri, R.; Pacini, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2379600
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact