In this paper we consider a scalar parabolic equation on a star graph; the model is quite general but what we have in mind is the description of traffic flows at a crossroad. In particular, we do not necessarily require the continuity of the unknown function at the node of the graph and, moreover, the diffusivity can be degenerate. Our main result concerns a necessary and sufficient algebraic condition for the existence of traveling waves in the graph. We also study in great detail some examples corresponding to quadratic and logarithmic flux functions, for different diffusivities, to which our results apply.

Traveling waves for degenerate diffusive equations on networks

Corli, Andrea
;
Rosini, Massimiliano D.
2017

Abstract

In this paper we consider a scalar parabolic equation on a star graph; the model is quite general but what we have in mind is the description of traffic flows at a crossroad. In particular, we do not necessarily require the continuity of the unknown function at the node of the graph and, moreover, the diffusivity can be degenerate. Our main result concerns a necessary and sufficient algebraic condition for the existence of traveling waves in the graph. We also study in great detail some examples corresponding to quadratic and logarithmic flux functions, for different diffusivities, to which our results apply.
Corli, Andrea; Ruvo, Lorenzo di; Malaguti, Luisa; Rosini, Massimiliano D.
File in questo prodotto:
File Dimensione Formato  
2017_Corli-diRuvo-Malaguti-Rosini_NHM.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 504.04 kB
Formato Adobe PDF
504.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1701.08032.pdf

accesso aperto

Descrizione: Pre print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 500.99 kB
Formato Adobe PDF
500.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2379524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact