The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa) and derived parameters such as operating temperature and mean radiant one (Top eTmr). However, in some specific cases—large open-spaces or in case of radiating surfaces—the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i.e continuous glass) and calculated with the local radiant temperature suggested in previous works, with the corresponding values obtained always varying the air speed or the air temperature inflated from the air vents, in order to achieve the optimal comfort conditions.

Smart control of air climatization system in function on the values of mean local radiant temperature

Cannistraro, Mauro;
2015

Abstract

The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa) and derived parameters such as operating temperature and mean radiant one (Top eTmr). However, in some specific cases—large open-spaces or in case of radiating surfaces—the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i.e continuous glass) and calculated with the local radiant temperature suggested in previous works, with the corresponding values obtained always varying the air speed or the air temperature inflated from the air vents, in order to achieve the optimal comfort conditions.
Cannistraro, Giuseppe; Cannistraro, Mauro; Restivo, Roberta
File in questo prodotto:
File Dimensione Formato  
21 - Smart control air climatization sysrem.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2377924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact