Excitable cells express a variety of ion channels that allow rapid exchange of ions with the extracellular space. Opening of Na(+) channels in excitable cells results in influx of Na(+) and cellular depolarization. The function of Na(v)1.5, an Na(+) channel expressed in the heart, brain, and gastrointestinal tract, is altered by interacting proteins. The pore-forming alpha-subunit of this channel is encoded by SCN5A. Genetic perturbations in SCN5A cause type 3 long QT syndrome and type 1 Brugada syndrome, two distinct heritable arrhythmia syndromes. Mutations in SCN5A are also associated with increased prevalence of gastrointestinal symptoms, suggesting that the Na(+) channel plays a role in normal gastrointestinal physiology and that alterations in its function may cause disease. We collected blood from patients with intestinal pseudo-obstruction (a disease associated with abnormal motility in the gut) and screened for mutations in SCN5A and ion channel-interacting proteins. A 42-year-old male patient was found to have a mutation in the gene TCAP, encoding for the small protein telethonin. Telethonin was found to be expressed in the human gastrointestinal smooth muscle, co-localized with Na(v)1.5, and co-immunoprecipitated with sodium channels. Expression of mutated telethonin, when co-expressed with SCN5A in HEK 293 cells, altered steady state activation kinetics of SCN5A, resulting in a doubling of the window current. These results suggest a new role for telethonin, namely that telethonin is a sodium channel-interacting protein. Also, mutations in telethonin can alter Na(v)1.5 kinetics and may play a role in intestinal pseudo-obstruction

A mutation in telethonin alters Nav1.5 function

DE GIORGIO, Roberto;
2008

Abstract

Excitable cells express a variety of ion channels that allow rapid exchange of ions with the extracellular space. Opening of Na(+) channels in excitable cells results in influx of Na(+) and cellular depolarization. The function of Na(v)1.5, an Na(+) channel expressed in the heart, brain, and gastrointestinal tract, is altered by interacting proteins. The pore-forming alpha-subunit of this channel is encoded by SCN5A. Genetic perturbations in SCN5A cause type 3 long QT syndrome and type 1 Brugada syndrome, two distinct heritable arrhythmia syndromes. Mutations in SCN5A are also associated with increased prevalence of gastrointestinal symptoms, suggesting that the Na(+) channel plays a role in normal gastrointestinal physiology and that alterations in its function may cause disease. We collected blood from patients with intestinal pseudo-obstruction (a disease associated with abnormal motility in the gut) and screened for mutations in SCN5A and ion channel-interacting proteins. A 42-year-old male patient was found to have a mutation in the gene TCAP, encoding for the small protein telethonin. Telethonin was found to be expressed in the human gastrointestinal smooth muscle, co-localized with Na(v)1.5, and co-immunoprecipitated with sodium channels. Expression of mutated telethonin, when co-expressed with SCN5A in HEK 293 cells, altered steady state activation kinetics of SCN5A, resulting in a doubling of the window current. These results suggest a new role for telethonin, namely that telethonin is a sodium channel-interacting protein. Also, mutations in telethonin can alter Na(v)1.5 kinetics and may play a role in intestinal pseudo-obstruction
Mazzone, A; Strege, Pr; Tester, Dj; Bernard, Ce; Faulkner, G; DE GIORGIO, Roberto; Makielski, Jc; Stanghellini, V; Gibbons, Sj; Ackerman, Mj; Farrugia, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2374971
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 54
social impact