We report on five compact, extremely young (<10 Myr) and blue (βUV < -2.5, Fλ = λβ) objects observed with VLT/Multi Unit Spectroscopic Explorer at redshifts 3.1169 and 3.235, in addition to three objects at z = 6.145. These sources are strongly magnified (3-40 times) by the Hubble Frontier Field galaxy clusters MACS J0416 and AS1063. Their delensed half-light radii (Re) are between 16 and 140 pc, the stellar masses are ≃1-20 × 106 M⊙, the magnitudes are mUV = 28.8-31.4 (-17 < MUV < -15) and specific star formation rates can be as large as ∼800 Gyr-1. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-GCs discovered so far. Rest-frame optical high-dispersion spectroscopy of one of them at z = 3.1169 yields a velocity dispersion σv ≃ 20 km s-1, implying a dynamical mass dominated by the stellar mass. Another object at z = 6.145, with delensed MUV ≃ -15.3 (mUV ≃ 31.4), shows a stellar mass and a star formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at z = 6.145, with delensed mUV ≃ 32, a stellar mass of 0.5 × 106 M⊙ and a star formation rate of 0.06 M⊙ yr-1 is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at z > 3, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the Universe and augment Lyα visibility during reionization. This work underlines the crucial role of JWST in characterizing the rest-frame optical and near-infrared properties of such low-luminosity high-z objects.

Paving the way for the JWST: witnessing globular cluster formation at z > 3

Caminha, G. B.;ROSATI, Piero;
2017

Abstract

We report on five compact, extremely young (<10 Myr) and blue (βUV < -2.5, Fλ = λβ) objects observed with VLT/Multi Unit Spectroscopic Explorer at redshifts 3.1169 and 3.235, in addition to three objects at z = 6.145. These sources are strongly magnified (3-40 times) by the Hubble Frontier Field galaxy clusters MACS J0416 and AS1063. Their delensed half-light radii (Re) are between 16 and 140 pc, the stellar masses are ≃1-20 × 106 M⊙, the magnitudes are mUV = 28.8-31.4 (-17 < MUV < -15) and specific star formation rates can be as large as ∼800 Gyr-1. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-GCs discovered so far. Rest-frame optical high-dispersion spectroscopy of one of them at z = 3.1169 yields a velocity dispersion σv ≃ 20 km s-1, implying a dynamical mass dominated by the stellar mass. Another object at z = 6.145, with delensed MUV ≃ -15.3 (mUV ≃ 31.4), shows a stellar mass and a star formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at z = 6.145, with delensed mUV ≃ 32, a stellar mass of 0.5 × 106 M⊙ and a star formation rate of 0.06 M⊙ yr-1 is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at z > 3, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the Universe and augment Lyα visibility during reionization. This work underlines the crucial role of JWST in characterizing the rest-frame optical and near-infrared properties of such low-luminosity high-z objects.
2017
Vanzella, E.; Calura, F.; Meneghetti, M.; Mercurio, A.; Castellano, M.; Caminha, G. B.; Balestra, I.; Rosati, Piero; Tozzi, P.; De Barros, S.; Grazian...espandi
File in questo prodotto:
File Dimensione Formato  
stx351.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.68 MB
Formato Adobe PDF
4.68 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1612.01526.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 4.83 MB
Formato Adobe PDF
4.83 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2373892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 137
  • ???jsp.display-item.citation.isi??? 130
social impact