Striatal dopamine adenosine A2A and D2 receptors interact to modulate some aspects of motor and motivational function. The demonstration of A2A/D2 receptor heteromerization in living cells constituted a progress for understanding the neurobiology of dopamine D2 and adenosine A2A receptors. In fact, the existence of putative striatalA2A/D2 receptor heteromers has been suggested to be important for striatal function under both normal and pathological conditions, such as Parkinson’s disease. Consequently, the antagonistic A2A-D2 receptor interactions in a putative striatal receptor heteromer on striato-pallidal GABA neuron led to the introduction of A2A receptor antagonists as possible anti- Parkinsonian drugs. The present mini-review briefly summarizes the main findings supporting the presence of antagonistic A2A-D2 receptor interactions in putative receptor heteromers in the basal ganglia. Special emphasis is given to in vivo microdialysis findings demonstrating the functional role putative A2A/D2 heteromers on striato-pallidal GABA neurons play in the modulation of this pathway, in which A2A receptors inhibit D2 receptor signaling. The possible relevance of compounds targeting the putative striatal A2A/D2 heteromer in the Parkinson’s disease pharmacological treatment is also discussed.

Adenosine a2a-d2 receptor-receptor interactions in putative heteromers in the regulation of the striato-pallidal gaba pathway: Possible relevance for parkinson’s disease and its treatment

BEGGIATO, Sarah;ANTONELLI, Tiziana;TOMASINI, Maria Cristina;BORELLI, Andrea Celeste;TANGANELLI, Sergio;FERRARO, Luca Nicola
2014

Abstract

Striatal dopamine adenosine A2A and D2 receptors interact to modulate some aspects of motor and motivational function. The demonstration of A2A/D2 receptor heteromerization in living cells constituted a progress for understanding the neurobiology of dopamine D2 and adenosine A2A receptors. In fact, the existence of putative striatalA2A/D2 receptor heteromers has been suggested to be important for striatal function under both normal and pathological conditions, such as Parkinson’s disease. Consequently, the antagonistic A2A-D2 receptor interactions in a putative striatal receptor heteromer on striato-pallidal GABA neuron led to the introduction of A2A receptor antagonists as possible anti- Parkinsonian drugs. The present mini-review briefly summarizes the main findings supporting the presence of antagonistic A2A-D2 receptor interactions in putative receptor heteromers in the basal ganglia. Special emphasis is given to in vivo microdialysis findings demonstrating the functional role putative A2A/D2 heteromers on striato-pallidal GABA neurons play in the modulation of this pathway, in which A2A receptors inhibit D2 receptor signaling. The possible relevance of compounds targeting the putative striatal A2A/D2 heteromer in the Parkinson’s disease pharmacological treatment is also discussed.
2014
Beggiato, Sarah; Antonelli, Tiziana; Tomasini, Maria Cristina; Borelli, Andrea Celeste; Agnati, Luigi F.; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca Nicola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2368496
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact