Background: The aims of the present study were to assess competitive sprinters' body size and composition and to determine their impact on performance. Methods: Ninety-eight competitive male sprinters (100 m) participated in this cross-sectional study. A series of measurements was directly taken and data on muscular strength and power tests were self-reported. Body composition was assessed by skinfold method and somatotype was calculated by the Heath-Carter anthropometric method. Sprinters were classified into three groups depending on their personal best time and comparisons were performed between the athletes in the top and in the bottom tertiles. Relationships between anthropometric traits and performance were assessed by Pearson's correlation coefficients. Results: Top sprinters had significantly greater body mass index, relaxed and contracted upper arm girths, thigh and calf girths, fat free mass and fat free mass index, and lower ectomorphy than the lowest tertile. Strength and power were significantly higher. Personal best time was significantly correlated with several anthropometric traits and indices of lean body mass. Conclusions: Body size, composition and somatotype differ between performance levels in speed running. Being less ectomorphic, with a greater fat free mass and strength, can explain significant differences in sprinting performances. The results presented in this study provide a point of reference about sprinter characteristics, which can help coaches and sport scientists to improve sprinter performance.

Body composition and size in sprint athletes

BARBIERI, Davide;ZACCAGNI, Luciana;GUALDI, Emanuela
2017

Abstract

Background: The aims of the present study were to assess competitive sprinters' body size and composition and to determine their impact on performance. Methods: Ninety-eight competitive male sprinters (100 m) participated in this cross-sectional study. A series of measurements was directly taken and data on muscular strength and power tests were self-reported. Body composition was assessed by skinfold method and somatotype was calculated by the Heath-Carter anthropometric method. Sprinters were classified into three groups depending on their personal best time and comparisons were performed between the athletes in the top and in the bottom tertiles. Relationships between anthropometric traits and performance were assessed by Pearson's correlation coefficients. Results: Top sprinters had significantly greater body mass index, relaxed and contracted upper arm girths, thigh and calf girths, fat free mass and fat free mass index, and lower ectomorphy than the lowest tertile. Strength and power were significantly higher. Personal best time was significantly correlated with several anthropometric traits and indices of lean body mass. Conclusions: Body size, composition and somatotype differ between performance levels in speed running. Being less ectomorphic, with a greater fat free mass and strength, can explain significant differences in sprinting performances. The results presented in this study provide a point of reference about sprinter characteristics, which can help coaches and sport scientists to improve sprinter performance.
2017
Barbieri, Davide; Zaccagni, Luciana; Babić, Vesna; Rakovac, Marija; Mišigoj Duraković, Marjeta; Gualdi, Emanuela
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2368493
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 38
social impact