Sales forecasting uses historical sales figures, in association with products characteristics and peculiarities, to predict short-term or long-term future performance in a business, and it can be used to derive sound financial and business plans. By using publicly available data, we build an accurate regression model for online sales forecasting obtained via a novel feature selection methodology composed by the application of the multi-objective evolutionary algorithm ENORA (Evolutionary NOn-dominated Radial slots based Algorithm) as search strategy in a wrapper method driven by the well-known regression model learner Random Forest. Our proposal integrates feature selection for regression, model evaluation, and decision making, in order to choose the most satisfactory model according to an a posteriori process in a multi-objective context. We test and compare the performances of ENORA as multi-objective evolutionary search strategy against a standard multi-objective evolutionary search strategy such as NSGA-II (Non-dominated Sorted Genetic Algorithm), against a classical backward search strategy such as RFE (Recursive Feature Elimination), and against the original data set.
Multi-objective evolutionary feature selection for online sales forecasting
SCIAVICCO, Guido;
2017
Abstract
Sales forecasting uses historical sales figures, in association with products characteristics and peculiarities, to predict short-term or long-term future performance in a business, and it can be used to derive sound financial and business plans. By using publicly available data, we build an accurate regression model for online sales forecasting obtained via a novel feature selection methodology composed by the application of the multi-objective evolutionary algorithm ENORA (Evolutionary NOn-dominated Radial slots based Algorithm) as search strategy in a wrapper method driven by the well-known regression model learner Random Forest. Our proposal integrates feature selection for regression, model evaluation, and decision making, in order to choose the most satisfactory model according to an a posteriori process in a multi-objective context. We test and compare the performances of ENORA as multi-objective evolutionary search strategy against a standard multi-objective evolutionary search strategy such as NSGA-II (Non-dominated Sorted Genetic Algorithm), against a classical backward search strategy such as RFE (Recursive Feature Elimination), and against the original data set.File | Dimensione | Formato | |
---|---|---|---|
article-in-press.pdf
solo gestori archivio
Descrizione: Article in press
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0925231216315612-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
articulo_regresion_reducido.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
3.26 MB
Formato
Adobe PDF
|
3.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.