We have performed a very accurate computation of the nonequilibrium fluctuation-dissipation ratio for the 3D Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes.

A statics-dynamics equivalence through the fluctuation-dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements

Calore, Enrico;MAIORANO, Andrea;SCHIFANO, Sebastiano Fabio;TRIPICCIONE, Raffaele;
2017

Abstract

We have performed a very accurate computation of the nonequilibrium fluctuation-dissipation ratio for the 3D Edwards-Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes.
Baity Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil Narvión, José Miguel; Gordillo Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin Mayor, Victor; Monforte Garcia, Jorge; Sudupe, Antonio Muñoz; Navarro, Denis; Parisi, Giorgio; Perez Gaviro, Sergio; Ricci Tersenghi, Federico; Ruiz Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Seoane, Beatriz; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David
File in questo prodotto:
File Dimensione Formato  
1838.full.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 668.33 kB
Formato Adobe PDF
668.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11392/2366771
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact