There is a considerable number of research publications on the characterization of porous media that is carried out in accordance with ISO 10534-2 (International Standards Organization, Geneva, Switzerland, 2001) and/or ISO 9053 (International Standards Organization, Geneva, Switzerland, 1991). According to the Web of ScienceTM (last accessed 22 September 2016) there were 339 publications in the Journal of the Acoustical Society of America alone which deal with the acoustics of porous media. However, the reproducibility of these characterization procedures is not well understood. This paper deals with the reproducibility of some standard characterization procedures for acoustic porous materials. The paper is an extension of the work published by Horoshenkov, Khan, Bécot, Jaouen, Sgard, Renault, Amirouche, Pompoli, Prodi, Bonfiglio, Pispola, Asdrubali, Hübelt, Atalla, Amédin, Lauriks, and Boeckx [J. Acoust. Soc. Am. 122(1), 345-353 (2007)]. In this paper, independent laboratory measurements were performed on the same material specimens so that the naturally occurring inhomogeneity in materials was controlled. It also presented the reproducibility data for the characteristic impedance, complex wavenumber, and for some related pore structure properties. This work can be helpful to better understand the tolerances of these material characterization procedures so improvements can be developed to reduce experimental errors and improve the reproducibility between laboratories.

How reproducible is the acoustical characterization of porous media?

POMPOLI, Francesco
Primo
;
BONFIGLIO, Paolo
;
2017

Abstract

There is a considerable number of research publications on the characterization of porous media that is carried out in accordance with ISO 10534-2 (International Standards Organization, Geneva, Switzerland, 2001) and/or ISO 9053 (International Standards Organization, Geneva, Switzerland, 1991). According to the Web of ScienceTM (last accessed 22 September 2016) there were 339 publications in the Journal of the Acoustical Society of America alone which deal with the acoustics of porous media. However, the reproducibility of these characterization procedures is not well understood. This paper deals with the reproducibility of some standard characterization procedures for acoustic porous materials. The paper is an extension of the work published by Horoshenkov, Khan, Bécot, Jaouen, Sgard, Renault, Amirouche, Pompoli, Prodi, Bonfiglio, Pispola, Asdrubali, Hübelt, Atalla, Amédin, Lauriks, and Boeckx [J. Acoust. Soc. Am. 122(1), 345-353 (2007)]. In this paper, independent laboratory measurements were performed on the same material specimens so that the naturally occurring inhomogeneity in materials was controlled. It also presented the reproducibility data for the characteristic impedance, complex wavenumber, and for some related pore structure properties. This work can be helpful to better understand the tolerances of these material characterization procedures so improvements can be developed to reduce experimental errors and improve the reproducibility between laboratories.
2017
Pompoli, Francesco; Bonfiglio, Paolo; Horoshenkov, Kirill V.; Khan, Amir; Jaouen, Luc; Bécot, François Xavier; Sgard, Franck; Asdrubali, Francesco; D'Alessandro, Francesco; Hübelt, Jörn; Atalla, Noureddine; Amédin, Celse K.; Lauriks, Walter; Boeckx, Laurens
File in questo prodotto:
File Dimensione Formato  
JASA_Feb2017.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
JasaPaper_Pompoli - rev.pdf

accesso aperto

Descrizione: Post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2366431
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 28
social impact