The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM) in estimating multiaxial fatigue strength of aluminium friction stir (FS) welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.

Designing aluminium friction stir welded joints against multiaxial fatigue

SUSMEL, Luca
Primo
;
JAMES, MALCOLM NEIL;MAGGIOLINI, Enrico;TOVO, Roberto
Ultimo
2016

Abstract

The present paper investigates the accuracy of the Modified Wöhler Curve Method (MWCM) in estimating multiaxial fatigue strength of aluminium friction stir (FS) welded joints. Having developed a bespoke joining technology, circumferentially FS welded tubular specimens of Al 6082-T6 were tested under proportional and non-proportional tension and torsion, the effect of non-zero mean stresses being also investigated. The validation exercise carried out using the experimental results have demonstrated that the MWCM applied in terms of nominal stresses, notch stresses, and also the Point Method is accurate in predicting the fatigue lifetime of the tested FS welded joints, with its use resulting in life estimates that fall within the uniaxial and torsional calibration scatter bands.
2016
Susmel, Luca; Hattingh, D. G.; James, MALCOLM NEIL; Maggiolini, Enrico; Tovo, Roberto
File in questo prodotto:
File Dimensione Formato  
1738-Article Text (.docx, max 100 Mb)-6351-1-10-20160613.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2366280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact