Many age-related neurodegenerative diseases, including Alzheimer Disease (AD), are elicited by an interplay of genetic, environmental, and dietary factors. Food rich in Omega-3 phospholipids seems to reduce the AD incidence. To investigate the molecular basis of this beneficial effect, we have investigated by CD and ESR studies the interaction between the Alzheimer peptide Ab-(1–42) and biomimetic lipid bilayers. The inclusion of 1,2-didocosahexaenoyl- sn-glycero-3-phosphocholine does not change significantly the bilayers organization, but favors its Ab-(1–42) interaction. The Omega-3 lipid amount modulates the effect intensity, suggesting a peptide selectivity for membranes containing polyunsatured fatty acids (PUFA) and providing hints for the mechanism and therapy of AD.

Many age-related neurodegenerative diseases, including Alzheimer Disease (AD), are elicited by an interplay of genetic, environmental, and dietary factors. Food rich in Omega-3 phospholipids seems to reduce the AD incidence. To investigate the molecular basis of this beneficial effect, we have investigated by CD and ESR studies the interaction between the Alzheimer peptide Aβ-(1-42) and biomimetic lipid bilayers. The inclusion of 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine does not change significantly the bilayers organization, but favors its Aβ-(1-42) interaction. The Omega-3 lipid amount modulates the effect intensity, suggesting a peptide selectivity for membranes containing polyunsatured fatty acids (PUFA) and providing hints for the mechanism and therapy of AD.

Preferential interaction of the Alzheimer peptide Aβ-(1-42) with Omega-3-containing lipid bilayers: Structure and interaction studies

GUERRINI, Remo;
2016

Abstract

Many age-related neurodegenerative diseases, including Alzheimer Disease (AD), are elicited by an interplay of genetic, environmental, and dietary factors. Food rich in Omega-3 phospholipids seems to reduce the AD incidence. To investigate the molecular basis of this beneficial effect, we have investigated by CD and ESR studies the interaction between the Alzheimer peptide Aβ-(1-42) and biomimetic lipid bilayers. The inclusion of 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine does not change significantly the bilayers organization, but favors its Aβ-(1-42) interaction. The Omega-3 lipid amount modulates the effect intensity, suggesting a peptide selectivity for membranes containing polyunsatured fatty acids (PUFA) and providing hints for the mechanism and therapy of AD.
2016
Emendato, Alessandro; Spadaccini, Roberta; Santis, Augusta De; Guerrini, Remo; D’Errico, Gerardino; Picone, Delia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2363212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact