We propose a model for nonisothermal ferromagnetic phase transition based on a phase field approach, in which the phase parameter is related but not identified with the magnetization. The magnetization is split in a paramagnetic and in a ferromagnetic contribution, dependent on a scalar phase parameter and identically null above the Curie temperature. The dynamics of the magnetization below the Curie temperature is governed by the order parameter evolution equation and by a Landau–Lifshitz type equation for the magnetization vector. In the simple situation of a uniaxial magnet, it is shown how the order parameter dynamics reproduces the hysteresis effect of the magnetization.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Data di pubblicazione: | 2012 | |
Titolo: | A non isothermal phase-field model for the ferromagnetic phase transition | |
Autori: | V. Berti; D. Grandi | |
Rivista: | MATHEMATICAL METHODS IN THE APPLIED SCIENCES | |
Parole Chiave: | dynamic and nonequilibrium phase transitions (general); magnetic materials; problems involving hysteresis | |
Abstract in inglese: | We propose a model for nonisothermal ferromagnetic phase transition based on a phase field approach, in which the phase parameter is related but not identified with the magnetization. The magnetization is split in a paramagnetic and in a ferromagnetic contribution, dependent on a scalar phase parameter and identically null above the Curie temperature. The dynamics of the magnetization below the Curie temperature is governed by the order parameter evolution equation and by a Landau–Lifshitz type equation for the magnetization vector. In the simple situation of a uniaxial magnet, it is shown how the order parameter dynamics reproduces the hysteresis effect of the magnetization. | |
Digital Object Identifier (DOI): | 10.1002/mma.2686 | |
Handle: | http://hdl.handle.net/11392/2362487 | |
Appare nelle tipologie: | 03.1 Articolo su rivista |