A comparative study of sulfur composites using carbon of various natures, namely, graphite, mesocarbon microbeads, and multi-walled carbon nanotubes, is performed in lithium battery design and evaluation. Morphological and structural analyses, by means of SEM and XRD, cyclic voltammetry and galvanostatic cycling in lithium cells are employed for characterization of the materials. Tetraethylene glycol dimethyl ether containing lithium trifluoromethansulfonate is considered the preferred electrolyte for performing the electrochemical tests. Prior to use in cells, the electrolyte characteristics in terms of 1H, 7Li, and 19F nuclei self-diffusion coefficients, ionic conductivity, and ionic association degree are studied by combining NMR and impedance spectroscopy. The best lithium–sulfur composite reported herein achieves a capacity higher than 500 mAh g−1 over 140 cycles with no sign of dendrite formation or failure. This performance is considered sufficiently suitable for the development of high-energy lithium batteries, in particular, considering the expected safety of the cells by employing a nonflammable glyme electrolyte instead of a conventional carbonate-based one.

Carbon Composites for a High-Energy Lithium–Sulfur Battey with a Glyme-Based Electrolyte

HASSOUN, Jusef
2017

Abstract

A comparative study of sulfur composites using carbon of various natures, namely, graphite, mesocarbon microbeads, and multi-walled carbon nanotubes, is performed in lithium battery design and evaluation. Morphological and structural analyses, by means of SEM and XRD, cyclic voltammetry and galvanostatic cycling in lithium cells are employed for characterization of the materials. Tetraethylene glycol dimethyl ether containing lithium trifluoromethansulfonate is considered the preferred electrolyte for performing the electrochemical tests. Prior to use in cells, the electrolyte characteristics in terms of 1H, 7Li, and 19F nuclei self-diffusion coefficients, ionic conductivity, and ionic association degree are studied by combining NMR and impedance spectroscopy. The best lithium–sulfur composite reported herein achieves a capacity higher than 500 mAh g−1 over 140 cycles with no sign of dendrite formation or failure. This performance is considered sufficiently suitable for the development of high-energy lithium batteries, in particular, considering the expected safety of the cells by employing a nonflammable glyme electrolyte instead of a conventional carbonate-based one.
2017
Carbone, Lorenzo; Peng, Jing; Agostini, Marco; Gobet, Mallory; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2361530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact